Si-Ahmed Naas
- Aalto University
- Maarintie 8
- 00076 Espoo
- Finland
- si-ahmed.naas@aalto.fi
Si-Ahmed joined the Ambient Intelligence group in 2019. He works on topics related to AI in networking. His interests further cover functional gaze prediction in egocentric videos and emotion prediction.

Excellent! Next, you can embed this page using
one of several
options.
To the site owner:
Action required! Mendeley is changing its API. In order to keep using Mendeley with BibBase past April 14th, you need to:
- renew the authorization for BibBase on Mendeley, and
- update the BibBase URL in your page the same way you did when you initially set up this page.
2021
(1)
Sharing geotagged pictures for an Emotion-based Recommender System.
Hitz, A.; Naas, S.; and Sigg, S.
In The 19th International Conference on Pervasive Computing and Communications (PerCom 2021), adjunct, 2021.
bibtex abstract
bibtex abstract
@inproceedings{hitz2020Emotion, title={Sharing geotagged pictures for an Emotion-based Recommender System}, author={Andreas Hitz and Si-Ahmed Naas and Stephan Sigg}, booktitle={The 19th International Conference on Pervasive Computing and Communications (PerCom 2021), adjunct}, year={2021}, abstract={Recommender systems are prominently used for movie or app recommendation or in e-commerce by considering profiles, past preferences and increasingly also further personalized measures. We designed and implemented an emotion-based recommender system for city visitors that takes into account user emotion and user location for the recommendation process. We conducted a comparative study between the emotion-based recommender system and recommender systems based on traditional measures. Our evaluation study involved 28 participators and the experiments showed that the emotion-based recommender system increased the average rating of the recommendation by almost 19%. We conclude that the use of emotion can significantly improve the results and especially their level of personalization. }, group = {ambience} } %%% 2020 %%%
Recommender systems are prominently used for movie or app recommendation or in e-commerce by considering profiles, past preferences and increasingly also further personalized measures. We designed and implemented an emotion-based recommender system for city visitors that takes into account user emotion and user location for the recommendation process. We conducted a comparative study between the emotion-based recommender system and recommender systems based on traditional measures. Our evaluation study involved 28 participators and the experiments showed that the emotion-based recommender system increased the average rating of the recommendation by almost 19%. We conclude that the use of emotion can significantly improve the results and especially their level of personalization.
2020
(4)
Functional Gaze Prediction in Egocentric Video.
Naas, S. A.; Jiang, X.; Sigg, S.; and Ji, Y.
In 18th International Conference on Advances in Mobile Computing and Multimedia (MoMM2020), 2020.
bibtex
bibtex
@inproceedings{Ahmed2020gaze, title={Functional Gaze Prediction in Egocentric Video}, author={Si Ahmed Naas and Xiaolan Jiang and Stephan Sigg and Yusheng Ji}, booktitle={18th International Conference on Advances in Mobile Computing and Multimedia (MoMM2020)}, year={2020}, group = {ambience} }
A Global Brain fuelled by Local intelligence Optimizing Mobile Services and Networks with AI.
Naas, S. A.; Mohammed, T.; and Sigg, S.
In 16th International Conference on Mobility, Sensing and Networking (MSN 2020) , 2020.
bibtex
bibtex
@inproceedings{naas2020GlobalBrain, title={A Global Brain fuelled by Local intelligence Optimizing Mobile Services and Networks with AI}, author={Si Ahmed Naas and Thaha Mohammed and Stephan Sigg}, booktitle={16th International Conference on Mobility, Sensing and Networking (MSN 2020) }, year={2020}, group = {ambience} }
Real-time Emotion Recognition for Sales.
Naas, S. A.; and Sigg, S.
In 16th International Conference on Mobility, Sensing and Networking (MSN 2020) , 2020.
bibtex
bibtex
@inproceedings{naas2020RealTime, title={Real-time Emotion Recognition for Sales}, author={Si Ahmed Naas and Stephan Sigg}, booktitle={16th International Conference on Mobility, Sensing and Networking (MSN 2020) }, year={2020}, group = {ambience} }
SVP: Sinusoidal Viewport Predictionfor 360-Degree Video Streaming.
Jiang, X.; Naas, S. A.; Chiang, Y.; Sigg, S.; and Ji, Y.
IEEE Access, 8. 2020.
doi bibtex abstract
doi bibtex abstract
@article{Chiang_2020_Viewpoint, author={Xiaolan Jiang and Si Ahmed Naas and Yi-Han Chiang and Stephan Sigg and Yusheng Ji}, journal={IEEE Access}, title={SVP: Sinusoidal Viewport Predictionfor 360-Degree Video Streaming}, year={2020}, abstract={The rapid growth of user expectations and network technologies has proliferated the service needs of 360-degree video streaming. In the light of the unprecedented bitrates required to deliver entire 360-degree videos, tile-based streaming, which associates viewport and non-viewport tiles with different qualities, has emerged as a promising way to facilitate 360-degree video streaming in practice. Existing work on viewport prediction primarily targets prediction accuracy, which potentially gives rise to excessive computational overhead and latency. In this paper, we propose a sinusoidal viewport prediction (SVP) system for 360-degree video streaming to overcome the aforementioned issues. In particular, the SVP system leverages 1) sinusoidal values of rotation angles to predict orientation, 2) the relationship between prediction errors, prediction time window and head movement velocities to improve the prediction accuracy, and 3) the normalized viewing probabilities of tiles to further improve adaptive bitrate (ABR) streaming performance. To evaluate the performance of the SVP system, we conduct extensive simulations based on real-world datasets. Simulation results demonstrate that the SVP system outperforms state-of-the-art schemes under various buffer thresholds and bandwidth settings in terms of viewport prediction accuracy and video quality, revealing its applicability to both live and video-on-demand streaming in practical scenarios.}, group = {ambience}, volume = {8}, doi = {10.1109/ACCESS.2020.3022062} }
The rapid growth of user expectations and network technologies has proliferated the service needs of 360-degree video streaming. In the light of the unprecedented bitrates required to deliver entire 360-degree videos, tile-based streaming, which associates viewport and non-viewport tiles with different qualities, has emerged as a promising way to facilitate 360-degree video streaming in practice. Existing work on viewport prediction primarily targets prediction accuracy, which potentially gives rise to excessive computational overhead and latency. In this paper, we propose a sinusoidal viewport prediction (SVP) system for 360-degree video streaming to overcome the aforementioned issues. In particular, the SVP system leverages 1) sinusoidal values of rotation angles to predict orientation, 2) the relationship between prediction errors, prediction time window and head movement velocities to improve the prediction accuracy, and 3) the normalized viewing probabilities of tiles to further improve adaptive bitrate (ABR) streaming performance. To evaluate the performance of the SVP system, we conduct extensive simulations based on real-world datasets. Simulation results demonstrate that the SVP system outperforms state-of-the-art schemes under various buffer thresholds and bandwidth settings in terms of viewport prediction accuracy and video quality, revealing its applicability to both live and video-on-demand streaming in practical scenarios.
Embedding in another Page
Copy & paste any of the following snippets into an existing page to embed this page. For more details see the documention.
JavaScript (easiest)
<script src="https://bibbase.org/show?bib=https://ambientintelligence.aalto.fi/bibtex/LiteraturAll&folding=0&filter=author_short:Naas&jsonp=1"></script>
<?php
$contents = file_get_contents("https://bibbase.org/show?bib=https://ambientintelligence.aalto.fi/bibtex/LiteraturAll&folding=0&filter=author_short:Naas");
print_r($contents);
?>
<iframe src="https://bibbase.org/show?bib=https://ambientintelligence.aalto.fi/bibtex/LiteraturAll&folding=0&filter=author_short:Naas"></iframe>