

Aspects of Pervasive Sensing: Perception and Security from ambient noise

Stephan Sigg

Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi

TU-BS, 27.04.2017

Cheap collaboration

Radio Vision

Security from ambient signals

- ► Weak multimodal fitness function
- Single local=global optimum

- ► Weak multimodal fitness function
- Single local=global optimum

Cheap collaboration

Radio Vision

Security from ambient signals

RF-sensing for environmental perception

- Multi-path propagation
- Signal superimposition
- Scattering
- Signal Phase

- Reflection
- Blocking of signal paths
- Doppler Shift
- Fresnel effects

RF-based activity recognition

Sensewaves Video

RF-based device-free activity recognition

Active SDR-based DFAR (USRP1) Frequency:

Sine signal, continuously modulated onto the carrier Signal:

Sample rate: 80 Hz

Passive SDR-based DFAR (USRP N210)

82.5MHz (WBX board), Vert900 Antenna, 4dBi antenna gain Frequency: Signal: Environmental FM radio captured from a nearby radio station

Sample rate: 64Hz

Active RSSI-based DFAR (INGA wsn nodes, v1.4)

Frequency: 2.4GHz IEEE802.15.4, PCB High Gain-Antenna Signal: RSSI samples from packets transmitted between nodes

Sample rate: Transmission of 100 packets per second

Accelerometer-based activity recognition (Iphone 4)

Signal: 3-axis accelerometer

Sample rate: 40 Hz

Walking Standing Crawling

MOBILE COMPUTIN THANSACTIONS ON RF-based device-free activity recognition

Cheap collaboration

Radio Vision

Security from ambient signals

Motivation

6

Motivation

Trust and proximity

We will use audio as a source of common information in proximity

6

Security from environmental stimuli

Audio-based ad-hoc secure pairing¹

MOBILE COMPUTING

- Use audio to generate secret key
- high Entropy, fuzzy cryptography, case studies, attack scenarios
 Hamming distance in created fingerprints

Audio sequence class

¹S. Sigg et al., Secure Communication based on Ambient Audio, IEEE Transactions on Mobile Computing

Secure pairing from noisy data

Device-to-Device Authentication

Accelerometer Reading

Accelerometer reading on z-axis only

Rotated Signal

- Orientation relative to ground using Madgwick's Algorithm
 - Notice influence of gravity g

Noise-Reduced Signal

 Apply a bandpass filter to keep frequencies between 0.5 and 12 Hz

Gait-Cycle Detection

- Partition data into gait cycles
- Resample gait cycles to equal length
- Calculate average gait cycle

Quantization

- Average gait cycle overlaid on each original gait cycle
- 4 bits per cycle

Quantization

- Average gait cycle overlaid on each original gait cycle
- 4 bits per cycle

Comparison between Locations

Evaluation

Cheap collaboration

Radio Vision

Security from ambient signals

Thank you!

Stephan Sigg stephan.sigg@aalto.fi

