

Fuzzy cryptography (for audio-based secure device pairing) – brief

Stephan Sigg

Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi

Version 1.0, September 1, 2016

Motivation

Motivation

Trust and proximity

We will use audio as a source of common information in proximity

E diff E diff Erdiff . diff

F 11011...01110

.

Secure pairing from noisy data

Audio-based ad-hoc secure pairing¹

- Use audio to generate secret key
- high Entropy, fuzzy cryptography, case studies, attack scenarios Hamming distance in created fingerprints

(loud audio source in 1.5m and 3m)

¹S. Sigg et al., Secure Communication based on Ambient Audio, IEEE Transactions on Mobile Computing

Audio-based ad-hoc secure pairing²

- Audio as common context source
- Fuzzy cryptography

²S. Sigg et al., Secure Communication based on Ambient Audio, IEEE Transactions on Mobile Computing, vol. 12, no. 2, 2013

Security from environmental stimuli Hamming distance in created fingerprints (loud audio source in 1.5m and 3m) _____tat passed at

²S. Sigg et al., Secure Communication based on Ambient Audio, IEEE Transactions on Mobile Computing, vol. 12, no. 2, 2013

How to synchronise audio without disclosing information? No data shall be transmitted among devices Hardware-originated synchronisation offset

 Approximate pattern matching with arbitrary common sequence ^a

^aT. F. Smith and M. S. Waterman. Identification of common molecular subsequences. Journal of molecular biology, 147(1):195?197, Mar. 1981

Hardware-originated synchronisation offset

- Synchronisation in the order of 3ms possible
- No additional data transmitted among devices^{3 4}

⁴N. Nguyen, S. Sigg, A. Huynh and Y. Ji: Using ambient audio in secure mobile phone communication, PerCom, 2012

³N. Nguyen, S. Sigg, A. Huynh and Y. Ji: Pattern-based Alignment of Audio Data for Ad-hoc Pairing, ISWC, 2012

