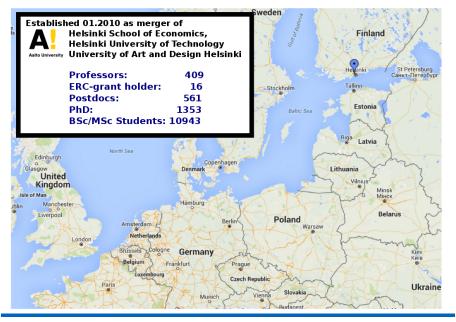


Challenges and tools for maintenance-free, intelligent distributed sensing

Stephan Sigg


Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi

CiNet, 22.02.2017

Established 01.2010 as merger of

Helsinki School of Economics, Helsinki University of Technology University of Art and Design Helsinki

Professors: 409
ERC-grant holder: 16
Postdocs: 561
PhD: 1353
BSc/MSc Students: 10943

Comnet

- Personnel: ~115
- 11 + 2 Professors
- budget ~7.8 M€
 - ~ 60% external funding
- ~ 55 M.Sc thesis annually
- ~ 8 D.Sc thesis annually

Commet is a multi-disciplinary unit of research and higher education covering communications and networking technology, networking business and human aspects of communications. In its area, Comnet is the largest unit in Finland

http://comnet.aalto.fi/en/

Professors

Xiao Yu Networking software and applications

Stephan Sigg Ubiquitous computing

Interaction (User Interfaces)

Antti Oulasvirta Heikki Hämmäinen Human-Computer Network Economics

Juuso Töyli Network economics Adjunct Prof.

Jarno Limnell Cyber security PoP

Information theory

Patric Östergård Olav Tirkkonen Communications theory

Riku Jäntti Commuications Engineering Head of department

Jyri Hämäläinen Radio communications Dean of ELEC

Raimo Kantola Networking technology Routing, trust, and privacy

Tarik Taleb Mobile Core Networks Virtualization and Cloud Communications

Jukka Manner Internet technologies

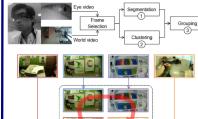
Group members and recent related research RF-based activity recognition

Maintenance-free, intelligent distributed sensing

Sensor graphs for distributed mathematical operation

Neuron-inspired communication between distributed nodes Probabilistic superimposed mathematical operations Artificial neural computation from implicit channel inputs

Conclusion



mbient ntelligence

Sadness

Bahareh Gholampoorvazdi

Signal processing, RF-based Device-free activity recognition

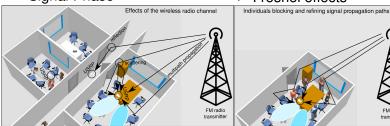
Authentication question

Takuya Maekawa

Activity Recognition Lifelogging Web Contents Engineering

Le Ngu Nguyen

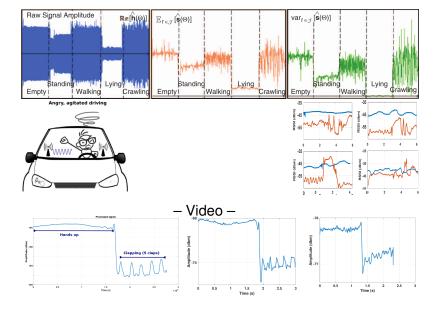
Usable Security. Activity recognition. Machine learning, Mobile applications



Exploiting the RF-channel for environmental preception

- Multi-path propagation
- Signal superimposition
- Scattering
- Signal Phase

- Reflection
- Blocking of signal paths
- Doppler Shift
- Fresnel effects



RF-based activity recognition

Sensewaves Video

RF-based device-free activity recognition

using ambient and local signals

Active SDR-based DFAR (USRP1) Frequency:

900MHz (RFX900 board), Vert900 Antenna), 4dBi antenna gain Signal: Sine signal, continuously modulated onto the carrier

Sample rate: 80 Hz

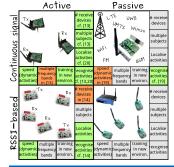
Passive SDR-based DFAR (USRP N210)

Frequency: 82.5MHz (WBX board), Vert900 Antenna, 4dBi antenna gain. Signal: Environmental FM radio captured from a nearby radio station

Sample rate: 64Hz

Active RSSI-based DFAR (INGA wsn nodes, v1.4)

Frequency: 2.4GHz IEEE802.15.4, PCB High Gain-Antenna Signal: RSSI samples from packets transmitted between nodes


Transmission of 100 packets per second Sample rate:

Accelerometer-based activity recognition (Iphone 4)

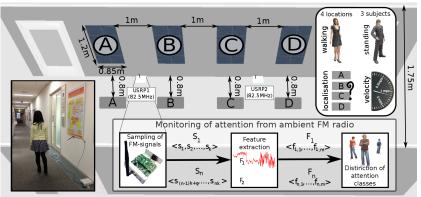
Signal: 3-axis accelerometer

Sample rate: 40 Hz

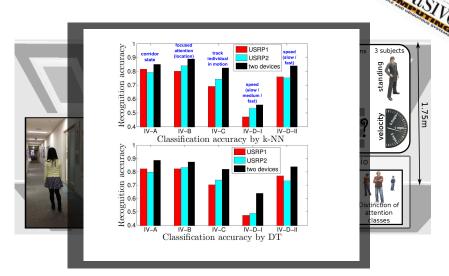
Walking Standing Crawling

RF-based device-free activity recognition

on top of an U SRP 1	Ac	ive SDR-based DFAR (USRP1)	and Married Berg, Mercur, MEE
200	Fre	quency: 900MHz (RFX900 board), Vert900 Antenna	i). 4dBi antenna gain
-500	Classification	Classification	∍r
	lying standing walking crawling	lying standing walking crawling	
	∰ ly .976 .024	를 ly .904 .096 st .096 .898 .006	nna gain
6	g wa .955 .045	g wa .013 .962 .025	io station
Transmitter:	_g cr .253 .748	g cr .038 .212 .75	
An INGA nod on top of an USRP 1	(a) Classification accuracy for	(b) Classification accuracy for	
	accelerometer-based activity	active SDR-based DFAR by a k-	des
Activ	recognition by a k-NN	NN algorithm	
ontinuous signal	Classification lying standing walking crawling	Classification lying standing walking crawling	
MA MA			
speed multiple train	邑 st .12 .869 .007 .004	目 ly 1.0 1.056 .98 .022	_
(dynamic frequency in m	ভ wa .953 .047	달 wa .023 .874 .102	
in [13]	Figure 19 1882 118 12 869 .007 .004 19 19 19 19 19 19 19 19 19 19 19 19 19	wa .023 .874 .102 .044 .144 .811	Milha
- pased	(c) Classification accuracy for active RSSI-based DFAR by a k-NN algorithm	(d) Classification accuracy for passive SDR-based DFAR by a k-NN algorithm	



(dynamic frequency in new


Monitoring attention from RF

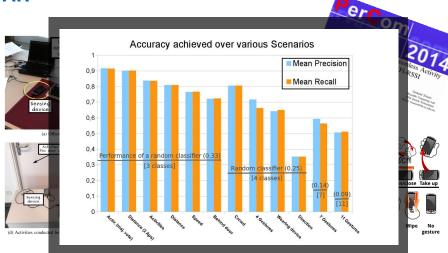
Monitoring attention from RF

Situation and gestures from passive RSSI-based **DFAR**

(b) Lecture room at TU-BS

(a) Office environment at ETH

Swipe right


(d) Activities conducted behind a closed door

gesture

Situation and gestures from passive RSSI-based DFAR

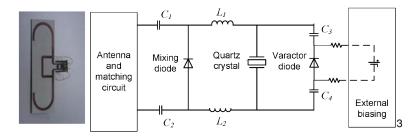
Group members and recent related research RF-based activity recognition

Maintenance-free, intelligent distributed sensing

Sensor graphs for distributed mathematical operation

Neuron-inspired communication between distributed nodes Probabilistic superimposed mathematical operations Artificial neural computation from implicit channel inputs

Conclusion



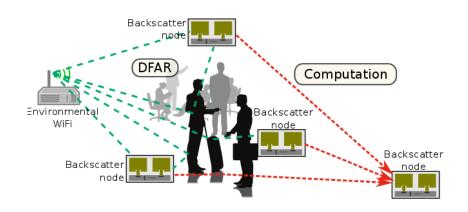
Energy-harvesting from Ambient RF noise

Efficiency: DC-conversion possible at about 70% efficiency¹

7cm·7cm rectenna: transmissions at 0.2Hz for 3.4ms each²

 0.5m^2 rectenna: RF-activity at 20Hz for $300\mu\text{s}$ each

¹ Doan et al. 'Design and Fabrication of Rectifying Antenna Circuit for Wireless Power Transmission System Operating At ISM Band.' International Journal of Electrical and Computer Engineering, 2016


 $^{^3}$ Song et al. 'On the use of the intermodulation communication towards zero power sensor nodes.' EuMC 2013

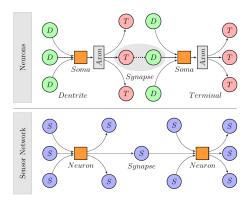
²Nishimoto et al. 'Prototype implementation of ambient RF energy harvesting wireless sensor networks.' IEEE Sensors, 2010.

Maintenance-free intelligent distributed sensing

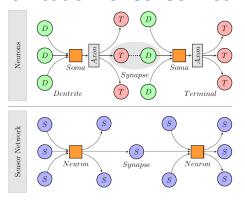
Group members and recent related research RF-based activity recognition

Maintenance-free, intelligent distributed sensing

Sensor graphs for distributed mathematical operation

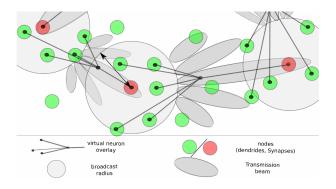

Neuron-inspired communication between distributed nodes Probabilistic superimposed mathematical operations Artificial neural computation from implicit channel inputs

Conclusion



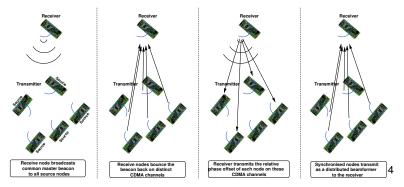
Neural communication for sensor networks

Neural communication for sensor networks


Problem

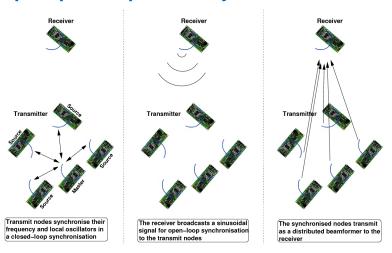
- Communication in sensor networks is omnidirectional
- In neural networks, the missing of edges is vital for the network's computational power

Neural communication for sensor networks

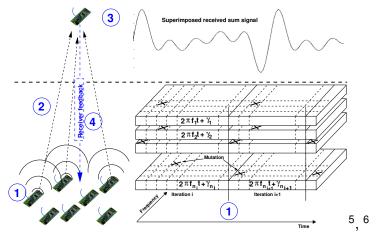

Proposal

Transmit beamforming to establish dedicated links

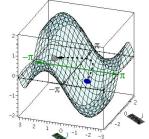
Example closed-loop carrier synchronization

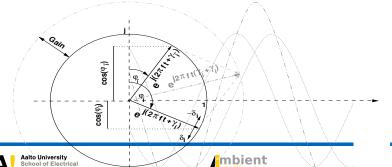

Too computationally expensive for parasitic operation

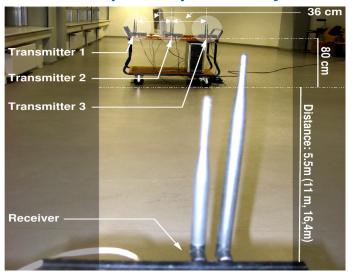
⁴ Y. Tu and G. Pottie, Coherent Cooperative Transmission from Multiple Adjacent Antennas to a Distant Stationary Antenna Through AWGN Channels. Proceedings of the IEEE VTC, 2002

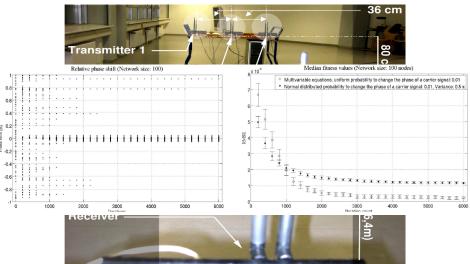

Example open-loop carrier synchronization

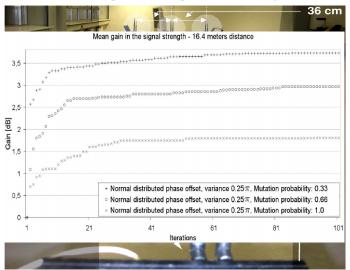
Too computationally expensive for parasitic operation

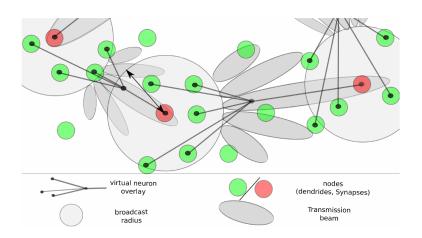

⁵R. Mudumbai, G. Barriac and U. Madhow, *On the feasibility of distributed beamforming in wireless networks*, IEEE Transactions on Wireless Communications, 2007


^o Sigg, El Masri and Beigl, A sharp asymptotic bound for feedback based closed-loop distributed adaptive beamforming in wireless sensor networks, IEEE Transactions on Mobile Computing, 2013




- Weak multimodal fitness function
- Single local=global optimum





Group members and recent related research RF-based activity recognition

Maintenance-free, intelligent distributed sensing

Sensor graphs for distributed mathematical operation

Neuron-inspired communication between distributed nodes Probabilistic superimposed mathematical operations Artificial neural computation from implicit channel inputs

Conclusion

Calculation during transmission on the channel

Envisioned paradigm shift in mobile computing

Parasitic operation Communication comes virtually for free Miniaturisation Processing and storage capabilities limited

(passive, parasitic, backscatter)

Calculation during transmission on the channel

Envisioned paradigm shift in mobile computing

Parasitic operation Communication comes virtually for free Miniaturisation Processing and storage capabilities limited (passive, parasitic, backscatter)

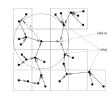
Potential: Trade processing load for communication load

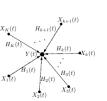
 Shift computation towards the wireless communication channel

Calculation during transmission on the channel

Envisioned paradigm shift in mobile computing

Parasitic operation Communication comes virtually for free Miniaturisation Processing and storage capabilities limited (passive, parasitic, backscatter)


Potential: Trade processing load for communication load

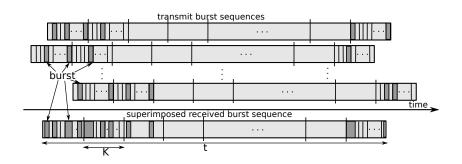

- Shift computation towards the wireless communication channel
- Computation below computational complexity possible?

Motivation: Computation during transmission^a

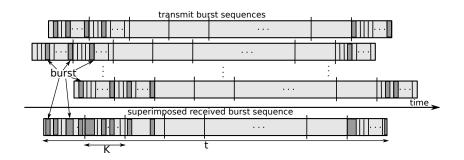
- Max. rate to compute & communicate functions
- Mention: Collisions might contain information

Calculation of by means of post- and pre-processing^a

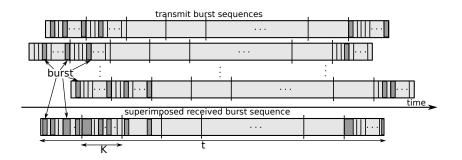
- ▶ Requires accurate channel state information
- Requires identical absolute transmit power


^aM. Goldenbaum, S. Stanczak, and M. Kaliszan, On function computation via wireless sensor multip channels, IEEE Wireless Communications and Networking Conf., 2009

^aA. Giridhar and P. Kumar, Toward a theory of in-network computation in wireless sensor networks, IEEE Comm. Mag., vol. 44, no 4, pp. 98-107, april 2006

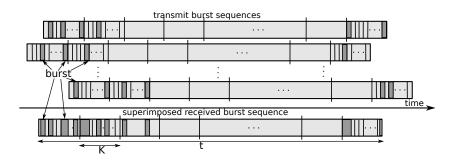

Utilising Poisson-distributed burst-sequences

Utilising Poisson-distributed burst-sequences



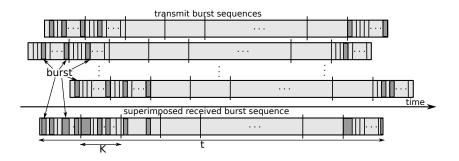
Basic operations Addition, subtraction, division and multiplication at the time of wireless data transmission via Poisson-distributed burst-sequences

Utilising Poisson-distributed burst-sequences



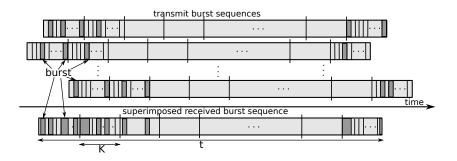
Addition Adding Poisson processes i with mean μ_i will result in a Poisson process with mean $\sum_{i=1}^{n} \mu_i$.

Utilising Poisson-distributed burst-sequences



Multiplication Applying logarithm laws allows multiplication

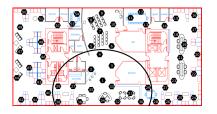
Utilising Poisson-distributed burst-sequences

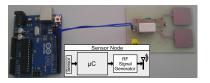


Division From two nodes, one transmits the Numerator and one the Denominator (fraction)

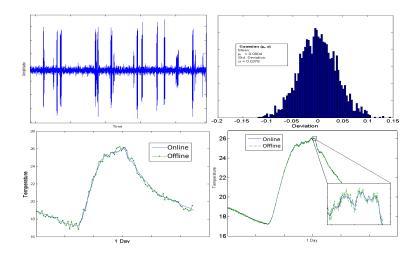
Utilising Poisson-distributed burst-sequences

Subtraction Combining division with logarithm laws allows subtraction (two nodes only)


Errors for calculating during transmission on the wireless channel

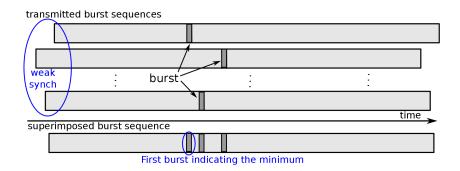

$t = 10^6$; $\kappa = 10^3$	10 nodes	20 nodes	30 nodes	40 nodes	50 nodes
mean err	.0322	.0466	.0609	.051	.0719
std-dev.	.0232	.0368	.0536	.0336	.0438
$\max N_i$	9	14	18.5	26	31
median T	2653.5	5161.5	7393	101816	124179
$t = 10^7$; $\kappa = 10^3$	10 nodes	20 nodes	30 nodes	40 nodes	50 nodes
mean err	.0049	.0176	.0402	.0475	.0781
std-dev.	.0062	.0127	.0233	.0292	.0405
$\max N_i$	12	18	23	27	31
median T	25708.5	52617.5	78502	101381	114348
$t = 10^7$; $\kappa = 10^2$	10 nodes	20 nodes	30 nodes	40 nodes	50 nodes
mean err	.0190	.1337	.2619	.4903	.6597
std-dev.	.0107	.0358	.0591	.0708	.1129
$\max N_i$	9.5	16	19	24	27
median T	24165	50037	71686.5	96829	114383

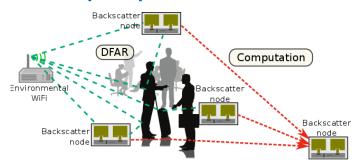
Case study to compare the calculation accuracy

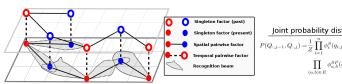


- ▶ Utilise data from the Intel Berkeley laboratory network (here: temperature)⁷
- Transmission of data by simple sensor nodes

⁷ http://db.csail.mit.edu/labdata/labdata.html




Further mathematical operations


Utilising the mean of the minimum of a convolution

- Exploiting the CDF of the minimum of a distribution, further operations are possible
 - $\rightarrow \sqrt{n}$
 - ▶ dⁿ
 - **>** ...

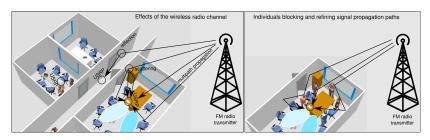
Environmental perception with CRFs

Joint probability distribution:

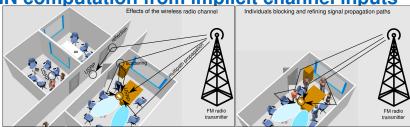
$$\begin{split} P(Q_{:,j-1},Q_{:,j}) &= \frac{1}{Z} \prod_{i=1}^{n} \phi_{i}^{S}(q_{i,j-1}) \prod_{i=1}^{n} \phi_{i}^{S}(q_{i,j}) \\ &\prod_{(a,b) \in E} \phi_{a,b}^{SP}(q_{a,j},q_{b,j}) \prod_{i=1}^{n} \phi_{i}^{TP}(q_{i,j-1},q_{i,j}) \end{split}$$

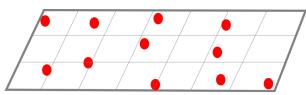
Group members and recent related research RF-based activity recognition

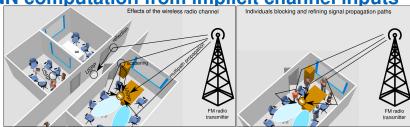
Maintenance-free, intelligent distributed sensing

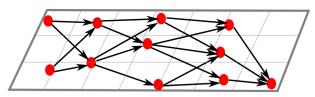

Sensor graphs for distributed mathematical operation

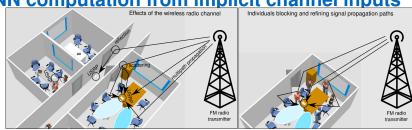
Neuron-inspired communication between distributed nodes Probabilistic superimposed mathematical operations Artificial neural computation from implicit channel inputs


Conclusion









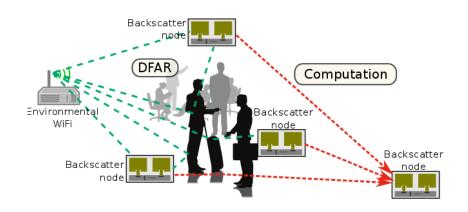


$$h_k(\overrightarrow{x},\overrightarrow{w}) = f_{ ext{act}}^{(3)} \left(\sum_{j=1}^{D_2} w_{jk}^{(2)} f_{ ext{act}}^{(2)} \left(\sum_{i=1}^{D_1} w_{ij}^{(1)} x_i + w_{0j}^{(1)}
ight) + w_{0k}^{(2)}
ight)$$

Group members and recent related research RF-based activity recognition

Maintenance-free, intelligent distributed sensing

Sensor graphs for distributed mathematical operation


Neuron-inspired communication between distributed nodes Probabilistic superimposed mathematical operations Artificial neural computation from implicit channel inputs

Conclusion

Maintenance-free intelligent distributed sensing

Thank you!

Stephan Sigg stephan.sigg@aalto.fi

