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Exploiting the RF-channel for environmental
preception

I Multi-path propagation
I Signal superimposition
I Scattering
I Signal Phase

I Reflection
I Blocking of signal paths
I Doppler Shift
I Fresnel effects
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RF-based activity recognition

Sensewaves Video
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– Video –
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RF-based device-free activity recognition

Lying emptyStanding CrawlingWalking
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Monitoring attention from RF
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Situation and gestures from passive RSSI-based
DFAR
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Energy-harvesting from Ambient RF noise
Efficiency: DC-conversion possible at about 70% efficiency1

7cm·7cm rectenna : transmissions at 0.2Hz for 3.4ms each2

0.5m2 rectenna : RF-activity at 20Hz for 300µs each

3

1
Doan et al. ’Design and Fabrication of Rectifying Antenna Circuit for Wireless Power Transmission System

Operating At ISM Band.’ International Journal of Electrical and Computer Engineering, 2016
2

Nishimoto et al. ’Prototype implementation of ambient RF energy harvesting wireless sensor networks.’ IEEE
Sensors, 2010.

3
Song et al. ’On the use of the intermodulation communication towards zero power sensor nodes.’ EuMC 2013
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Maintenance-free intelligent distributed sensing
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Calculation during transmission on the channel

Envisioned paradigm shift in mobile computing

Parasitic operation Communication comes virtually for free
Miniaturisation Processing and storage capabilities limited

(passive, parasitic, backscatter)

Potential: Trade processing load for communication load

I Shift computation towards the wireless
communication channel

I Computation below computational complexity
possible?
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Calculation during transmission on the channel
Motivation: Computation during transmissiona

I Max. rate to compute & communicate functions
I Mention: Collisions might contain information

a
A. Giridhar and P. Kumar, Toward a theory of in-network computation in wireless sensor

networks, IEEE Comm. Mag., vol. 44, no 4, pp. 98-107, april 2006

Calculation of by means of post- and
pre-processinga

I Requires accurate channel state information
I Requires identical absolute transmit power

a
M. Goldenbaum, S. Stanczak, and M. Kaliszan, On function computation via wireless sensor multiple-access

channels, IEEE Wireless Communications and Networking Conf., 2009
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Calculation during transmission on the channel
Utilising Poisson-distributed burst-sequences
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Basic operations Addition, subtraction, division and
multiplication at the time of wireless data
transmission via Poisson-distributed
burst-sequences
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Utilising Poisson-distributed burst-sequences
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Addition Adding Poisson processes i with mean µi will
result in a Poisson process with mean

∑n
i=1 µi .
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Division From two nodes, one transmits the Numerator and
one the Denominator (fraction)
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Calculation during transmission on the channel
Utilising Poisson-distributed burst-sequences
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Subtraction Combining division with logarithm laws allows
subtraction (two nodes only)
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Calculation during transmission on the channel
Errors for calculating during transmission on the wireless channel

t = 106; κ = 103 10 nodes 20 nodes 30 nodes 40 nodes 50 nodes
mean err .0322 .0466 .0609 .051 .0719
std-dev. .0232 .0368 .0536 .0336 .0438
max Ni 9 14 18.5 26 31

median T 2653.5 5161.5 7393 101816 124179

t = 107; κ = 103 10 nodes 20 nodes 30 nodes 40 nodes 50 nodes
mean err .0049 .0176 .0402 .0475 .0781
std-dev. .0062 .0127 .0233 .0292 .0405
max Ni 12 18 23 27 31

median T 25708.5 52617.5 78502 101381 114348

t = 107; κ = 102 10 nodes 20 nodes 30 nodes 40 nodes 50 nodes
mean err .0190 .1337 .2619 .4903 .6597
std-dev. .0107 .0358 .0591 .0708 .1129
max Ni 9.5 16 19 24 27

median T 24165 50037 71686.5 96829 114383
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Calculation during transmission on the channel
Case study to compare the calculation accuracy

I Utilise data from the Intel Berkeley laboratory network
(here: temperature)4

I Transmission of data by simple sensor nodes

4
http://db.csail.mit.edu/labdata/labdata.html
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Calculation during transmission on the channel

Offline
Online Offline

Online
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Further mathematical operations
Utilising the mean of the minimum of a convolution

I Exploiting the CDF of the minimum of a distribution, further
operations are possible

I
√

n
I dn

I . . .
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Environmental perception with CRFs
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ANN computation from implicit channel inputs

hk (
−→x ,−→w ) = f (3)act

 D2∑
j=1

w (2)
jk f (2)act

 D1∑
i=1

w (1)
ij xi + w (1)

0j

+ w (2)
0k


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Maintenance-free intelligent distributed sensing
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