

Aalto University School of Electrical Engineering

Quantum Computation

Stephan Sigg

Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi

TU-Braunschweig, 17.03.2017

1985 David Deutsch: *Can a Quantum Computer* efficiently solve problems that have no efficient solution on a classical computer?

1985 David Deutsch: *Can a Quantum Computer efficiently solve problems that have no efficient solution on a classical computer?*

1994 Peter Shor: Fast factorization / solution to the discrete logarithm problem

- **1985** David Deutsch: *Can a Quantum Computer efficiently solve problems that have no efficient solution on a classical computer?*
- **1994** Pether Shor: Fast factorization / solution to the discrete logarithm problem
- 1995 Lov Grover: *Quadratic speedup on unstructured search space*

- **1985** David Deutsch: *Can a Quantum Computer efficiently solve problems that have no efficient solution on a classical computer?*
- **1994** Pether Shor: Fast factorization / solution to the discrete logarithm problem
- **1995** Lov Grover: *Quadratic speedup on unstructured search space*
- 1990s Quantum Computers can efficiently simulate physical systems that can not be efficiently simulated on classical computers

- **1985** David Deutsch: *Can a Quantum Computer efficiently solve problems that have no efficient solution on a classical computer?*
- **1994** Pether Shor: Fast factorization / solution to the discrete logarithm problem
- **1995** Lov Grover: *Quadratic speedup on unstructured search space*
- **1990s** *Quantum Computers can efficiently simulate physical systems that can not be efficiently simulated on classical computers*
 - 2009 Harrow, Hassidim, Lloyd: *Exponential speedup in solving linear equations*

Introduction

Qubits

Quantum Computation

Quantum Algorithms

Quantum Bits

Similar to a classical bit, a qubit can take states $|0\rangle$ or $|1\rangle$

Quantum Bits

- \blacktriangleright Similar to a classical bit, a qubit can take states $|0\rangle$ or $|1\rangle$
- In contrast to classical bits, a qubit can be in a linear combination of states:

$$|\psi\rangle = \alpha |\mathbf{0}\rangle + \beta |\mathbf{1}\rangle \qquad \qquad \alpha, \beta \in \mathbb{C}$$
$$|\alpha|^2 + |\beta|^2 = 1$$

Quantum Bits

- $\blacktriangleright\,$ Similar to a classical bit, a qubit can take states $|0\rangle$ or $|1\rangle$
- In contrast to classical bits, a qubit can be in a linear combination of states:

$$|\psi\rangle = \alpha |\mathbf{0}\rangle + \beta |\mathbf{1}\rangle \qquad \qquad \alpha, \beta \in \mathbb{C}$$
$$|\alpha|^2 + |\beta|^2 = 1$$

Bloch-sphere representation of a Qubit

$$|\psi
angle = oldsymbol{e}^{i\gamma}\left(\cosrac{ heta}{2}|0
angle + oldsymbol{e}^{iarphi}\sinrac{ heta}{2}|1
angle
ight)$$

Quantum Bits

- $\blacktriangleright\,$ Similar to a classical bit, a qubit can take states $|0\rangle$ or $|1\rangle$
- In contrast to classical bits, a qubit can be in a linear combination of states:

Bloch-sphere representation of a Qubit

$$|\psi
angle = \cos{ extstyle{ heta}\over extstyle{ heta}}|0
angle + e^{iarphi}\sin{ extstyle{ heta}\over extstyle{ heta}}|1
angle$$

 $|\psi\rangle = \alpha |\mathbf{0}\rangle + \beta |\mathbf{1}\rangle$

(Ignore $e^{i\gamma}$ since it has no observable effect)

Aalto University School of Electrical Engineering

 $\begin{array}{rcl} \alpha, \beta & \in & \mathbb{C} \\ |\alpha|^2 + |\beta|^2 & = & 1 \end{array}$

 $|0\rangle$

Measurement of qubits

 Infinite number of possible states for a single qubit.

Measurement of qubits

- Infinite number of possible states for a single qubit.
- However, measurement of $|\psi\rangle = \alpha |\mathbf{0}\rangle + \beta |\mathbf{1}\rangle$ yields
 - 0 with probability $|\alpha|^2$
 - 1 with probability $|\beta|^2$

Multiple qubits

- Systems of multiple qubits are described accordingly:
 - $\blacktriangleright\,$ A 2-qubit system has four computational basis states $|00\rangle, |01\rangle, |10\rangle, |11\rangle$ with

$$\begin{split} |\psi\rangle &= \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle \\ &\sum_{i,j\in 0,1} |\alpha_{ij}|^2 = 1 \end{split}$$

Multiple qubits

- Systems of multiple qubits are described accordingly:
 - $\blacktriangleright\,$ A 2-qubit system has four computational basis states $|00\rangle, |01\rangle, |10\rangle, |11\rangle$ with

$$\begin{split} |\psi\rangle &= \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle \\ &\sum_{i,j \in 0,1} |\alpha_{ij}|^2 = 1 \end{split}$$

Remark A system of *n* qubits has computational basis states of the form $|x_1x_2...x_n\rangle$ and 2^n amplitudes. For larger *n* it becomes increasingly infeasible for a classical system to keep track of all individual amplitues

Introduction

Qubits

Quantum Computation

Quantum Algorithms

Single qubit gates

Quantum NOT-gate

$$X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$X|\psi\rangle = X(\alpha|0\rangle + \beta|1\rangle)$$
$$= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$
$$= \begin{bmatrix} \beta \\ \alpha \end{bmatrix}$$
$$= \beta|0\rangle + \alpha|1\rangle$$

Single qubit gates

Requirements for quantum gates

Quantum gates need to be

linear

(Violation of this rule would lead to paradoxes such as time travel and faster-than-light travel)

• Unitary ($U^{\dagger}U = I$)

(In order to guarantee $|\alpha|^2 + |\beta|^2 = 1$ also after applying the transformation)

Single qubit gates

Requirements for quantum gates

Quantum gates need to be

linear

(Violation of this rule would lead to paradoxes such as time travel and faster-than-light travel)

• Unitary (
$$U^{\dagger}U = I$$
)

(In order to guarantee $|\alpha|^2 + |\beta|^2 = 1$ also after applying the transformation)

Impossible: Copy qubits

Single qubit gates

The Hadamard-gate

$$H \equiv \frac{1}{\sqrt{2}} \left[\begin{array}{rrr} 1 & 1 \\ 1 & -1 \end{array} \right]$$

The H-gate turns a $|0\rangle$ and $|1\rangle$ halfway between $|0\rangle$ and $|1\rangle$:

Decomposing single qubit operations

Decomposing single qubit operations

Any Classical cirquit can be simulated with qubit gates

Multiple qubit gates

Controlled-NOT (CNOT) Flip second qubit IFF control qubit is $|1\rangle$:

$$\begin{array}{l} |00\rangle \rightarrow |00\rangle \\ |01\rangle \rightarrow |01\rangle \\ |10\rangle \rightarrow |11\rangle \\ |11\rangle \rightarrow |10\rangle \end{array}$$

$$U_{CN} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Bell states

In	Out
$ 00\rangle$	$(00 angle+ 11 angle)/\sqrt{2}\equiv eta_{00} angle$
$ 01\rangle$	$(01\rangle + 10\rangle)/\sqrt{2} \equiv \beta_{01}\rangle$
$ 10\rangle$	$(00 angle - 11 angle)/\sqrt{2} \equiv eta_{10} angle$
$ 11\rangle$	$(01 angle - 10 angle)/\sqrt{2} \equiv eta_{11} angle$

EPR states

Hadamard gate to put the top qubit in a superposition CNOT gate superposition acts as control input to CNOT Example: $|00\rangle \xrightarrow{H} \frac{(|0\rangle+|1\rangle)|0\rangle}{\sqrt{2}} \xrightarrow{CNOT} \frac{|00\rangle+|11\rangle}{\sqrt{2}}$

Quantum teleportation

Quantum teleportation

Quantum teleportation is a technique for moving quantum states around – even in the absense of a quantum communications channel

Quantum teleportation

Quantum teleportation

Quantum teleportation is a technique for moving quantum states around – even in the absense of a quantum communications channel

 $|\psi
angle \ = \ lpha |\mathbf{0}
angle + eta |\mathbf{1}
angle$

$$\begin{aligned} |\psi\rangle &= \alpha |0\rangle + \beta |1\rangle \\ |\psi_0\rangle &= |\psi\rangle |\beta_{00}\rangle \\ &= 1/\sqrt{2} \left[\alpha |0\rangle (|00\rangle + |11\rangle) + \beta |1\rangle (|00\rangle + |11\rangle)\right] \end{aligned}$$

$$\begin{aligned} |\psi\rangle &= \alpha |0\rangle + \beta |1\rangle \\ |\psi_0\rangle &= |\psi\rangle |\beta_{00}\rangle \\ &= 1/\sqrt{2} \left[\alpha |0\rangle (|00\rangle + |11\rangle) + \beta |1\rangle (|00\rangle + |11\rangle)\right] \\ |\psi_1\rangle &= 1/\sqrt{2} \left[\alpha |0\rangle (|00\rangle + |11\rangle) + \beta |1\rangle (|10\rangle + |01\rangle)\right] \end{aligned}$$

$$|\psi\rangle = \alpha |\mathbf{0}\rangle + \beta |\mathbf{1}\rangle$$

$$\begin{aligned} |\psi_0\rangle &= |\psi\rangle|\beta_{00}\rangle \\ &= 1/\sqrt{2} \left[\alpha|0\rangle(|00\rangle + |11\rangle) + \beta|1\rangle(|00\rangle + |11\rangle)\right] \\ |\psi_1\rangle &= 1/\sqrt{2} \left[\alpha|0\rangle(|00\rangle + |11\rangle) + \beta|1\rangle(|10\rangle + |01\rangle)\right] \\ |\psi_2\rangle &= 1/2 \left[\alpha(|0\rangle + |1\rangle)(|00\rangle + |11\rangle) + \beta(|0\rangle - |1\rangle)(|10\rangle + |01\rangle)\right] \end{aligned}$$

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

$$\begin{aligned} |\psi_0\rangle &= |\psi\rangle|\beta_{00}\rangle \\ &= 1/\sqrt{2} \left[\alpha|0\rangle(|00\rangle + |11\rangle) + \beta|1\rangle(|00\rangle + |11\rangle)\right] \\ |\psi_1\rangle &= 1/\sqrt{2} \left[\alpha|0\rangle(|00\rangle + |11\rangle) + \beta|1\rangle(|10\rangle + |01\rangle)\right] \\ |\psi_2\rangle &= 1/2 \left[\alpha(|0\rangle + |1\rangle)(|00\rangle + |11\rangle) + \beta(|0\rangle - |1\rangle)(|10\rangle + |01\rangle)\right] \\ &= 1/2 \left[|00\rangle(\alpha|0\rangle + \beta|1\rangle) + |01\rangle(\alpha|1\rangle + \beta|0\rangle) \end{aligned}$$

$$+|\mathbf{10}\rangle(\alpha|\mathbf{0}\rangle-\beta|\mathbf{1}\rangle)+|\mathbf{11}\rangle(\alpha|\mathbf{1}\rangle-\beta|\mathbf{0}\rangle)]$$

Introduction

Qubits

Quantum Computation

Quantum Algorithms

Quantum parallelism

Evaluating a function for multiple inputs simultaneously

•
$$f(x): \{0,1\} \to \{0,1\}$$

► ⊕: addition modulo 2

Quantum parallelism

Evaluating a function for multiple inputs simultaneously

•
$$f(x): \{0,1\} \to \{0,1\}$$

► ⊕: addition modulo 2

Applying U_f results in

$$\frac{|0,f(0)\rangle+|1,f(1)\rangle}{\sqrt{2}}$$

Deutsch's algorithm

Deutsch's algorithm

•
$$|\psi_0\rangle = |01\rangle$$

Deutsch's algorithm

$$\begin{array}{l} |\psi_0\rangle = |01\rangle \\ |\psi_1\rangle = \left[\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] \end{array}$$

Deutsch's algorithm

 $\begin{array}{c} \text{If we apply } U_f \text{ to} \\ \frac{|x\rangle(|0\rangle - |1\rangle)}{\sqrt{2}} \text{ we obtain} \\ (-1)^{f(x)} \frac{|x\rangle(|0\rangle - |1\rangle)}{\sqrt{2}} \end{array}$

$$|\psi_0\rangle = |01\rangle
|\psi_1\rangle = \left[\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right]
|\psi_2\rangle = \begin{cases} \pm \left[\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] & \text{if } f(0) = f(1) \\ \pm \left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] & \text{if } f(0) \neq f(1) \end{cases}$$

Deutsch's algorithm

Since $f(0) \oplus f(1) = 0$ IFF f(0) = f(1)

$$|\psi_0\rangle = |01\rangle
|\psi_1\rangle = \left[\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right]
|\psi_2\rangle = \begin{cases} \pm \left[\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] & \text{if } f(0) = f(1) \\ \pm \left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] & \text{if } f(0) \neq f(1) \end{cases}
|\psi_3\rangle = \begin{cases} \pm |0\rangle \left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] & \text{if } f(0) = f(1) \\ \pm |1\rangle \left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] & \text{if } f(0) \neq f(1) \end{cases}
= \pm |f(0) \oplus f(1)\rangle \left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right]$$

Deutsch's algorithm

$$\begin{aligned} |\psi_0\rangle &= |01\rangle \\ |\psi_1\rangle &= \left[\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] \\ \pm \left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] & \text{if } f(0) = f(1) \\ \pm \left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] & \text{if } f(0) \neq f(1) \end{aligned} \\ |\psi_3\rangle &= \begin{cases} \pm |0\rangle \left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] & \text{if } f(0) = f(1) \\ \pm |1\rangle \left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] & \text{if } f(0) \neq f(1) \end{aligned} \\ &= \pm |f(0) \oplus f(1)\rangle \left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] \end{aligned}$$

Measuring the first qubit determines a global property with just a single evaluation of f(x)

Quantum algorithms – outlook

Deutsch-Jozsa algorithm

Introduction

Qubits

Quantum Computation

Quantum Algorithms

Thank you!

Stephan Sigg stephan.sigg@aalto.fi

Literature

 M.A. Nielsen and I.L. Chuang: Quantum Computation and Quantum Information, Cambridge, 2000.

Further reading

- M.A. Nielsen and I.L. Chuang: Quantum Computation and Quantum Information, Cambridge, 2000.
- A. Montanaro: Quantum algorithms: an overview, Npj Quantum Information, (2) 2016
- Childs, van Dam: Quantum algorithms for algebraic problems, Rev. Mod. Phys. 82, 2010
- M. Mosca: Computational Complexity, 2303-2333, Springer, 2012
- M. Santha: Quantum walk based search algorithms, Theory Appl. Model. Comput. 4978, 31-46, 2008
- D. Bacon, W. van Dam: Recent progress in quantum algorithms, Commun. ACM 53, 84-93, 2010

Quantum Algorithm Zoo http://math.nist.gov/quantum/zoo/ Timeline of Quantum Computation https://en.wikipedia.org /wiki/Timeline_of_quantum_computing

Single qubit gates

The Z-gate

$$Z \equiv \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right]$$

The Z gate leaves $|0\rangle$ unchanged and flips $|1\rangle$ to $-|1\rangle$

Copying qubits

Is is possible to copy qubits?

- In classical cirquits, it is possible to copy bits with the help of a CNOT gate
- Can we use the CNOT qubit gate to copy qubits?

Copying qubits

Is is possible to copy qubits?

- In classical cirquits, it is possible to copy bits with the help of a CNOT gate
- Can we use the CNOT qubit gate to copy qubits?

• Try to copy
$$|\psi\rangle = \alpha |\mathbf{0}\rangle + \beta |\mathbf{1}\rangle$$
:

$$|\psi\rangle = a|0\rangle + b|1\rangle - \frac{}{|0\rangle} a|00\rangle + b|11\rangle$$

Copying qubits

Is is possible to copy qubits?

- In classical cirquits, it is possible to copy bits with the help of a CNOT gate
- Can we use the CNOT qubit gate to copy qubits?
- Try to copy $|\psi\rangle = \alpha |\mathbf{0}\rangle + \beta |\mathbf{1}\rangle$:
- Did we copy $|\psi
 angle$?

$$\begin{split} |\psi\rangle &= a|0\rangle + b|1\rangle \underbrace{\qquad \qquad }_{|0\rangle} a|00\rangle + b|11\rangle \end{split}$$

Copying qubits

Is is possible to copy qubits?

- In classical cirquits, it is possible to copy bits with the help of a CNOT gate
- Can we use the CNOT qubit gate to copy qubits?
- Try to copy $|\psi\rangle = \alpha |\mathbf{0}\rangle + \beta |\mathbf{1}\rangle$:
- Did we copy $|\psi\rangle$?
- Show equation 1.22

$$\begin{split} |\psi\rangle &= a|0\rangle + b|1\rangle \underbrace{\qquad \qquad }_{|0\rangle \underbrace{\qquad \qquad }_{0}} a|00\rangle + b|11\rangle \end{split}$$

Copying of qubits

No-cloning theorem

Aim $|\psi\rangle \otimes |\mathbf{s}\rangle \xrightarrow{U} U(|\psi\rangle \otimes |\mathbf{s}\rangle) = |\psi\rangle \otimes |\psi\rangle$

Copying of qubits

No-cloning theorem

Aim
$$|\psi\rangle \otimes |\mathbf{s}\rangle \xrightarrow{U} U(|\psi\rangle \otimes |\mathbf{s}\rangle) = |\psi\rangle \otimes |\psi\rangle$$

Assume

$$egin{aligned} & egin{aligned} & egi$$

Copying of qubits

No-cloning theorem

Aim
$$|\psi\rangle \otimes |\mathbf{s}\rangle \xrightarrow{U} U(|\psi\rangle \otimes |\mathbf{s}\rangle) = |\psi\rangle \otimes |\psi\rangle$$

Assume

$$egin{aligned} & egin{aligned} & egi$$

Contradiction The inner product of these to equations gives

$$\langle \psi | \varphi \rangle = (\langle \psi | \varphi \rangle)^2$$

 $x = x^2$ is only possible for $x \in \{0, 1\}$

Classical computations on a quantum computer

Simulation of classical cirquits

Any classical circuit can be replaced by an equivalent quantum circuit containing only reversible elements by using Toffoli gates

Inputs			Outputs		
a	b	c	a'	b'	c'
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	1	0	1
1	1	0	1	1	1
1	1	1	1	1	0

Classical computations on a quantum computer

qubit gates

Restrictions for multiple qubit gates

Most classical gates not directly convertable to qubit gates since they are non-invertible and irreversible (Unitary requirement).

Unitary quantum gates are always invertible

Universality result

Any multiple qubit logic gate may be composed from CNOT and single qubit gates

Deutsch-Jozsa algorithm

Deutsch-Jozsa algorithm

$$\blacktriangleright |\psi_0\rangle = |0\rangle^{\otimes n}|1\rangle$$

Deutsch-Jozsa algorithm

$$\begin{array}{l} \bullet \ |\psi_0\rangle = |0\rangle^{\otimes n}|1\rangle \\ \bullet \ |\psi_1\rangle = \sum_{x \in \{0,1\}^n} \frac{|x\rangle}{\sqrt{2^n}} \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] \end{array}$$

Deutsch-Jozsa algorithm

$$\begin{aligned} &|\psi_0\rangle = |0\rangle^{\otimes n} |1\rangle \\ &|\psi_1\rangle = \sum_{x \in \{0,1\}^n} \frac{|x\rangle}{\sqrt{2^n}} \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}} \right] \\ &|\psi_2\rangle = \sum_x \frac{(-1)^{f(x)} |x\rangle}{\sqrt{2^n}} \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}} \right] \end{aligned}$$

Deutsch-Jozsa algorithm

$$\begin{aligned} &|\psi_0\rangle = |0\rangle^{\otimes n}|1\rangle \\ &|\psi_1\rangle = \sum_{x \in \{0,1\}^n} \frac{|x\rangle}{\sqrt{2^n}} \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] \\ &|\psi_2\rangle = \sum_x \frac{(-1)^{f(x)}|x\rangle}{\sqrt{2^n}} \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] \\ &|\psi_3\rangle = \sum_z \sum_x \frac{(-1)^{x \cdot z + f(x)}|z\rangle}{2^n} \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] \end{aligned}$$

