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Important results in Quantum Computation

1985 David Deutsch: Can a Quantum Computer
efficiently solve problems that have no efficient
solution on a classical computer?
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discrete logarithm problem

1995 Lov Grover: Quadratic speedup on unstructured
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1990s Quantum Computers can efficiently simulate
physical systems that can not be efficiently
simulated on classical computers

2009 Harrow, Hassidim, Lloyd: Exponential speedup in
solving linear equations
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Quantum bits

Quantum Bits

I Similar to a classical bit, a qubit can take states |0〉 or |1〉

I In contrast to classical bits, a qubit can be in a linear
combination of states:

|ψ〉 = α|0〉+ β|1〉 α, β ∈ C

|α|2 + |β|2 = 1
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Quantum bits
Quantum Bits

I Similar to a classical bit, a qubit can take states |0〉 or |1〉
I In contrast to classical bits, a qubit can be in a linear

combination of states:

|ψ〉 = α|0〉+ β|1〉 α, β ∈ C

|α|2 + |β|2 = 1

Bloch-sphere representation of a Qubit

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉

(Ignore eiγ since it has no observable effect)
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Quantum bits

Measurement of qubits

I Infinite number of possible
states for a single qubit.

I However, measurement of
|ψ〉 = α|0〉+ β|1〉 yields

0 with probability |α|2
1 with probability |β|2
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Multiple qubits

I Systems of multiple qubits are described accordingly:
I A 2-qubit system has four computational basis states
|00〉, |01〉, |10〉, |11〉 with

|ψ〉 = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉∑
i,j∈0,1

|αij |2 = 1

Remark A system of n qubits has computational basis
states of the form |x1x2 . . . xn〉 and 2n amplitudes.
For larger n it becomes increasingly infeasible for
a classical system to keep track of all individual
amplitues
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Quantum Computation
Single qubit gates

Quantum NOT-gate

X ≡
[

0 1
1 0

]

X |ψ〉 = X (α|0〉+ β|1〉)

=

[
0 1
1 0

] [
α
β

]
=

[
β
α

]
= β|0〉+ α|1〉
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Quantum Computation
Single qubit gates

Requirements for quantum gates
Quantum gates need to be

I linear
(Violation of this rule would lead to paradoxes such as time
travel and faster-than-light travel)

I Unitary (U†U = I)
(In order to guarantee |α|2 + |β|2 = 1 also after applying
the transformation)

I Impossible: Copy qubits
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Quantum Computation
Single qubit gates

The Hadamard-gate

H ≡ 1√
2

[
1 1
1 −1

]
The H-gate turns a |0〉 and |1〉 halfway between |0〉 and |1〉:

H|0〉 = |0〉+ |1〉√
2

;H|1〉 = |0〉 − |1〉√
2
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Quantum Computation
Decomposing single qubit operations

U = eiα

rotation about z︷ ︸︸ ︷[
e−iβ/2 0

0 eiβ/2

] rotation︷ ︸︸ ︷[
cos γ

1 − sin γ
2

sin γ
2 cos γ

2

]
,

[
e−iδ/2 0

0 eiδ/2

]

I Any Classical cirquit can be simulated with qubit gates
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Quantum Computation
Multiple qubit gates

Controlled-NOT (CNOT)
Flip second qubit IFF control
qubit is |1〉:

|00〉 → |00〉
|01〉 → |01〉
|10〉 → |11〉
|11〉 → |10〉
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Quantum Computation
Bell states

EPR states

Hadamard gate to put the top qubit in a superposition
CNOT gate superposition acts as control input to CNOT

Example: |00〉 H−→ (|0〉+|1〉)|0〉√
2

CNOT−−−−→ |00〉+|11〉√
2
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Quantum Computation
Quantum teleportation

Quantum teleportation
Quantum teleportation is a technique for moving quantum
states around – even in the absense of a quantum
communications channel
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|ψ〉 = α|0〉+ β|1〉
|ψ0〉 = |ψ〉|β00〉

= 1/
√

2 [α|0〉(|00〉+ |11〉) + β|1〉(|00〉+ |11〉)]
|ψ1〉 = 1/

√
2 [α|0〉(|00〉+ |11〉) + β|1〉(|10〉+ |01〉)]

|ψ2〉 = 1/2 [α(|0〉+ |1〉)(|00〉+ |11〉) + β(|0〉 − |1〉)(|10〉+ |01〉)]
= 1/2 [|00〉(α|0〉+ β|1〉) + |01〉(α|1〉+ β|0〉)

+|10〉(α|0〉 − β|1〉) + |11〉(α|1〉 − β|0〉)]
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Quantum algorithms
Quantum parallelism

Evaluating a function for multiple inputs simultaneously

I f (x) : {0,1} → {0,1}
I ⊕: addition modulo 2

I Applying Uf results in

|0, f (0)〉+ |1, f (1)〉√
2
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]
I Measuring the first qubit determines a global property with

just a single evaluation of f (x)
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Quantum algorithms – outlook
Deutsch-Jozsa algorithm
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Thank you!

Stephan Sigg
stephan.sigg@aalto.fi
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Links

Quantum Algorithm Zoo http://math.nist.gov/quantum/zoo/
Timeline of Quantum Computation https://en.wikipedia.org

/wiki/Timeline_of_quantum_computing
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Quantum Computation
Single qubit gates

The Z-gate

Z ≡
[

1 0
0 −1

]
The Z gate leaves |0〉 unchanged and flips |1〉 to −|1〉
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Quantum Computation
Copying qubits

Is is possible to copy qubits?

I In classical cirquits, it is possible to copy bits with the help
of a CNOT gate

I Can we use the CNOT qubit gate to copy qubits?

I Try to copy |ψ〉 = α|0〉+ β|1〉:
I Did we copy |ψ〉?
I Show equation 1.22
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Quantum Computation
Copying of qubits

No-cloning theorem

Aim |ψ〉 ⊗ |s〉 U−→ U(|ψ〉 ⊗ |s〉) = |ψ〉 ⊗ |ψ〉

Assume

U(|ψ〉 ⊗ |s〉) = |ψ〉 ⊗ |ψ〉
U(|ϕ〉 ⊗ |s〉) = |ϕ〉 ⊗ |ϕ〉

Contradiction The inner product of these to equations gives

〈ψ|ϕ〉 = (〈ψ|ϕ〉)2

x = x2 is only possible for x ∈ {0,1}
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Quantum algorithms
Classical computations on a quantum computer

Simulation of classical cirquits
Any classical circuit can be replaced by an equivalent quantum
circuit containing only reversible elements by using Toffoli gates
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Quantum Computation
qubit gates

Restrictions for multiple qubit gates
Most classical gates not directly convertable to qubit gates
since they are non-invertible and irreversible (Unitary
requirement).
Unitary quantum gates are always invertible

Universality result
Any multiple qubit logic gate may be composed from CNOT and
single qubit gates



Stephan Sigg
March 16, 2017

7 / 8

Quantum algorithms
Deutsch-Jozsa algorithm
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Quantum algorithms
Deutsch-Jozsa algorithm

I |ψ0〉 = |0〉⊗n|1〉
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Quantum algorithms
Deutsch-Jozsa algorithm

I |ψ0〉 = |0〉⊗n|1〉
I |ψ1〉 =

∑
x∈{0,1}n

|x〉√
2n

[
|0〉−|1〉√

2

]
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Quantum algorithms
Deutsch-Jozsa algorithm
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x

(−1)f (x)|x〉√
2n
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2
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I |ψ3〉 =

∑
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∑
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2

]
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