
Technical University

of Munich

Department of Informatics

Bachelor’s Thesis in Informatics

Emotion-based Recommender System for City Visitors Built on
Analyzing Egocentric Images

Andreas Hitz

Technical University

of Munich

Department of Informatics

Bachelor’s Thesis in Informatics

Emotion-based Recommender System for City Visitors Built on
Analyzing Egocentric Images

Emotionsbasiertes Empfehlungssystem für Stadtbesucher,
aufbauend auf der Analyse egozentrischer Bilder

Author: Andreas Hitz

Supervisor: Prof. Dr.-Ing. Jörg Ott

Advisor: Prof. Dr. Stephan Sigg, Aalto University

Submission: 13.03.2018

I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

München, 13.03.2018

(Andreas Hitz)

Acknowledgments

I especially want to thank Stephan, my advisor from Aalto, who has always been a great

motivator, constantly and quickly gave me lots of constructive feedback and helped me

to head in the right direction with this thesis.

A big ”Thank you” also goes to Prof. Ott, my supervisor from TUM, who gave me the

opportunity to write this thesis at Aalto and in this way spend another semester in

Finland.

Last, but not least, it is important to appreciate the work of all the awesome people from

StackOverflow, who have a solution for every problem, an answer to every question, and

helped me to learn both Python and JavaScript. Without them, it would have been a lot

more complicated to finish this thesis!

Abstract

This thesis designs and implements a recommender system for city visitors, which is based

on the analysis of emotions of pictures as well as the user’s location and own emotion.

Following a comprehensive literature review of related work on recommender systems,

computer vision and emotion analysis, a conceptional architecture for the recommender

system is designed and described step by step, covering all technical implementation

details, such as used algorithms, libraries and technologies. Firstly, databases of pictures

collected from different sources are created. The contents of these photos are analyzed to

receive a textual content description and identify the emotion of an image. Each image

is, in addition to its extracted associated information, tagged with an emotion score,

which is based on the two dimensions pleasure and activity. Secondly, the Python-based

recommender system generates personalized recommendations for places to visit by using

these scores together with the user’s location and emotion. A graphical user interface

written in HTML and JavaScript serves as the base for accessing the system, where the

pictures are marked on an interactive map, the user specifies his own location and emotion,

and the recommendations can be retrieved.

The thesis continues with an evaluation of the system by performing a user study which

demonstrates the usefulness of considering emotions for recommendations. It ends with

a discussion about challenges, a view on future work, and a conclusive summary of the

topic.

Inhaltsangabe

Diese Bachelorarbeit entwirft und implementiert ein Empfehlungssystem für Stadtbe-

sucher, welches auf der Analyse von Stimmung von Bildern sowie dem Standort und der

eigenen Emotion des Nutzers basiert.

Nach einer umfassenden Literaturanalyse verwandter Werke über Empfehlungssysteme,

Computer Vision und Emotionsanalyse wird Schritt für Schritt eine konzeptionelle Ar-

chitektur für das Empfehlungssystem entworfen und beschrieben, inklusive aller tech-

nischen Details der Implementierung, wie verwendete Algorithmen, Bibliotheken und

Technologien. Zunächst werden Datenbanken von Bildern erstellt, die aus verschiede-

nen Quellen stammen. Die Inhalte dieser Fotos werden analysiert, um eine textuelle

Beschreibung des Bildinhalts zu erhalten und die Stimmung eines Bildes zu identi-

fizieren. Jedes Bild wird zusätzlich zu den ihm zugehörigen Informationen mit einem

Wert für die Stimmung markiert, der auf den beiden Dimensionen Freude und Aktivität

basiert. Anschließend generiert das auf Python basierte Empfehlungssystem personal-

isierte Empfehlungen für zu besuchende Orte unter Verwendung dieser Werte zusammen

mit dem Standort und der Emotion des Nutzers. Eine graphische Benutzeroberfläche,

programmiert in HTML und JavaScript, dient als Basis für den Zugriff auf das System,

in dem die Bilder auf einer interaktiven Karte markiert sind, der Nutzer seinen eigenen

Standort und die Emotion angibt, und die Empfehlungen abgerufen werden können.

Die Bachelorarbeit fährt fort mit einer Evaluation des Systems anhand der Durchführung

einer Nutzerstudie, die den Nutzen der Berücksichtigung von Emotionen für Empfehlun-

gen zeigt. Sie endet mit einer Diskussion über Herausforderungen, einem Ausblick auf

weitere Tätigkeiten, und einer stichhaltigen Zusammenfassung des Themas.

Contents

1 Introduction 4
1.1 Motivation and Problem Description . 4
1.2 Proposed Solution and Contribution . 5
1.3 Outline . 6

2 Related Work 7
2.1 Recommender Systems . 7

2.1.1 Content-based Filtering . 8
2.1.2 Collaborative Filtering . 9
2.1.3 Hybrid Systems . 9

2.2 Mobile Recommender Systems . 10
2.2.1 Definitions and Tasks . 10
2.2.2 Data . 11
2.2.3 Algorithms . 12
2.2.4 Evaluation . 14
2.2.5 Summary and Challenges . 15

2.3 Tourism Recommender Systems . 16
2.3.1 Architectural Styles . 18
2.3.2 User Involvement . 19
2.3.3 Recommendation Criteria . 19
2.3.4 Summary and Challenges . 20

2.4 Computer Vision and its Applications . 22
2.4.1 Activity Recognition . 22
2.4.2 Object Detection and Recognition 23
2.4.3 Emotion Recognition . 24

2.5 Egocentric Vision . 25
2.6 Emotion Analysis . 26

2.6.1 Definition of Emotion . 26
2.6.2 Textual Emotion Detection . 27
2.6.3 Image Emotion Recognition . 28

1

CONTENTS 2

3 Design of an Emotion-based Recommender System 30
3.1 Data: Images . 31

3.1.1 Sources for Collecting Images . 31
3.1.1.1 Flickr . 32
3.1.1.2 Instagram . 36

3.1.2 Image Content Analysis . 36
3.1.2.1 Google Cloud Vision API 37
3.1.2.2 Clarifai . 37

3.1.3 Sentiment and Emotion . 40
3.1.3.1 Sentiment Analysis . 40
3.1.3.2 Emotion Analysis . 41

3.1.4 Database Analysis . 46
3.1.5 Summary . 49

3.2 Recommender System . 50
3.2.1 Available Systems . 50
3.2.2 Custom System used here . 51

3.2.2.1 Saving the Parameters . 52
3.2.2.2 Finding the Closest Places 52
3.2.2.3 Calculating the Recommendations 54
3.2.2.4 Selecting the Data for Further Processing 55

3.2.3 Summary . 56
3.3 Presentation: User Interface . 56

3.3.1 Folium . 57
3.3.2 Leaflet . 58
3.3.3 Leaflet Sidebar . 59
3.3.4 Flask . 60
3.3.5 Displaying the Images . 62
3.3.6 Choosing the User’s Emotion . 64
3.3.7 Creating an Own Database . 66
3.3.8 Getting and Displaying the Recommendations 67
3.3.9 Summary . 69

4 Evaluation 71
4.1 User Study Design . 71
4.2 Conducting the Study . 72
4.3 Results . 73
4.4 Interpretation . 74

5 Discussion & Future Work 76
5.1 Data Sources . 76
5.2 Image Content and Emotion Analysis . 77
5.3 Recommender System . 77
5.4 User Interface . 78

CONTENTS 3

6 Summary 80
6.1 Conclusions . 81

Appendix: Usage of the Recommender System 82

List of Figures 86

List of Listings 88

Chapter 1

Introduction

1.1 Motivation and Problem Description

Recommender systems have been extensively used by popular online services in the past

few years. Whenever similar movies are suggested on Netflix, or Amazon shows related

items to a certain product, a recommender system is the foundation for these suggestions.

In E-commerce, relevant recommendations can help the service providers to increase their

sales numbers. With internet services becoming increasingly personalized, the need for

highly customized and user-tailored solutions is even more accelerated. Consistent devel-

opments in the handling of big data, machine learning and power of computers benefit

this development towards fully personalized software as well.

In the area of tourism, recommending places to visit is a common application. Most

existing systems are built on analyzing only general facts about its users or characteristics

of the places to be recommended, or contextual information such as location, time of day,

or weather. The motivation for this thesis is that, besides these aspects, emotions are

an important personal factor that can help optimizing the recommendations significantly.

The level of personalization can be improved a lot by taking the emotion, i.e. mood, of

users, and emotions expressed in pictures into account.

Objectives that need to be discussed are, first of all, to find sources for the recommen-

dations, i.e. pictures of places to be recommended. An important question following this

is how to determine emotions present in pictures, that is, how to assign emotions to pic-

tures, and where the information about the user’s emotion comes from. This requires a

clear definition of the concept emotion. Furthermore, it is necessary to build a system

capable of calculating and generating recommendations by taking the emotions of its user

4

CHAPTER 1. INTRODUCTION 5

and considered pictures into account, and elaborate appropriate means to present the

resulting data in a user-friendly way. After all, it also needs to be examined whether the

consideration of emotions can really improve the quality of recommendations.

Challenges are, amongst others, that the topic of emotions, closely connected to the

area of psychology, is a rather subjective matter, and that it is necessary to create an

automated, efficient solution that treats all data inputs equally, while still remaining

accessible for all users. More challenges will be revealed later on during the evaluation

and discussion in more detail.

1.2 Proposed Solution and Contribution

In this thesis, it is aimed to design and implement a location- and emotion-based recom-

mender system as a technical solution for the described problem to enhance personalized

recommendations. The system is written in Python on the backend side, where all the

data is processed and the recommendations are calculated, and in HTML and JavaScript

on the frontend side, i.e. user interface. In the system, the component of emotion is used as

an extra parameter for recommendations, in addition to the location: As a general idea,

the user of the system can select his own emotion, and based on this, nearby pictures

expressing a similar emotion are recommended. This connects the topics of recommender

systems and emotion recognition from images. The term emotion is defined as a value on

two dimensions: pleasure (whether the user feels rather positive or negative) and activity

(whether the user feels rather active or passive).

Projecting the recommendations on a website in a useful, clear way helps the user to get

ideas for places he could visit, thus reaching a positive user experience for the recommender

system. In addition, a user study is carried out after developing the recommender system

which finds that, although many factors are challenging for the success and accuracy

of the system, the overall rating of the participants, on a scale from one to five stars,

for the recommendations based on the emotion is about half a star higher than when

the emotions are not considered. This demonstrates that using the emotion component

significantly improves the quality of recommendations, which is the main contribution of

the thesis. In combination with other parameters, this can lead to recommender systems

delivering far more personalized results than the state-of-the-art systems of today are able

to do.

CHAPTER 1. INTRODUCTION 6

1.3 Outline

The thesis is divided into seven parts: Following this brief introduction, Chapter 2 starts

with an overview of related work on recommender systems, with a focus on mobile and

tourism recommender systems, to give an extensive insight about the context of this thesis.

The chapter also covers important background information about applications from com-

puter vision, introduces egocentric vision, and focuses especially on the analysis of emotion

in text and images. Chapter 3 describes and documents the built emotion-based recom-

mender system as a whole with all its needed components, divided into detailed sections,

following a general overview, about data sources, used algorithms and programming lan-

guages, and the presentation via a graphical user interface. Every section discusses possible

alternatives and explains the advantages of the eventually applied solutions. Examples are

used to show the functionality of the system step by step, the analysis of the data produced

during the recommendation process justifies the taken approaches. Chapter 4 evaluates

the system by conducting a user study, showing the usefulness of the emotion-based rec-

ommendations generated by the system, and demonstrating the reached improvement. In

Chapter 5, many aspects of the system are discussed again, emphasizing possible future

work and enhancements, before Chapter 6 eventually closes with a summary and draws

conclusions. An Appendix contains information about how the recommender system can

be used, as well as the project description uploaded to GitHub.

Chapter 2

Related Work

This chapter gives detailed information about existing academic work related to the tech-

nical background of recommender systems, its general concepts, methods and challenges,

and sums up in particular mobile and tourism recommender systems. Following this, a

few applications of computer vision are described, namely activity, object and emotion

recognition. After an introduction to egocentric vision, the topic of both textual and visual

emotion analysis is discussed.

2.1 Recommender Systems

Recommender systems are software tools and techniques which try to predict the popu-

larity of certain items, e.g. music or movies, for their users, and aim to give personalized,

accurate recommendations. The user can possibly rate items, for instance on a scale from

one to five stars, according to his satisfaction with the recommendations, which subse-

quently can lead to better suggestions. Recommender systems have been invented and

implemented first in the 1990s, and are nowadays used in many popular online services,

such as Amazon or Netflix, and for various different purposes. Recommender systems are

as well subject to many research studies [Beel 16]. There are two main approaches for giv-

ing predictions, content-based filtering and collaborative filtering, which can be combined

to hybrid systems [Ricc 15], as illustrated in Figure 2.1. These are introduced briefly in

the following.

7

CHAPTER 2. RELATED WORK 8

Figure 2.1: Recommender system approaches

2.1.1 Content-based Filtering

In content-based filtering, the recommendation takes place by analyzing and catego-

rizing specifically defined characteristics of an item, e.g. through keywords, and finding

others with similar properties, thus requiring appropriate means to measure similarity

[Melv 17]. One example is Pandora Radio, which plays music with analogical characteris-

tics to these of a song provided by the user. For each user of the system, a content-based

profile is built containing information about his item preferences: The item features are

weighted according to the importance of the features for the user. Simple algorithms or

more advanced machine learning techniques are used for the computation of the weights.

The profile is developed and adjusted over time when the user interacts with the system.

New items are compared with items previously rated by the user, and the most fitting

ones are then recommended by the algorithm [Ricc 15]. Direct user feedback can be ad-

ditionally used to assign higher or lower weights on the importance of certain attributes,

thus refining the results. Many online music or movie recommender systems are using

the content-based approach, where the cold start problem, i.e. when in the beginning a

big set of data is needed to get an accurate analysis, is not as big as at collaborative

filtering, since the amount of inputs needed to start is a lot smaller. A disadvantage is the

limited scope of this technique to one type of content - for instance, by knowing the music

preferences of a user, a system can not draw conclusions to the movie preferences - and

the smaller influence of the users towards recommendations compared to collaborative

filtering.

CHAPTER 2. RELATED WORK 9

2.1.2 Collaborative Filtering

In collaborative filtering, the predictions are based on users’ decisions of the past,

and on decisions which have been made by other, similar users. This means that a high

amount of data is analyzed to understand user preferences and to eventually provide

precise recommendations [Melv 17]. With the collected amount of information in internet

services becoming constantly bigger, this technique is nowadays used more frequently.

The data can be gathered explicitly, e.g. by specifically asking a user to rate an item, or

implicitly, e.g. by analyzing what items a user has been looking at in an online service. A

set of recommended items is generated by comparing this data to data from other users,

and prioritizing the best matches. This process requires special algorithms. One of the

most popular examples for collaborative filtering is Amazon’s feature ”Customers who

bought this item also viewed / purchased” presenting a list of other products [Lind 98],

which is shown on their website when viewing any product. Another commonly known

example is Facebook’s friend recommendation feature, which works by examining the

network of connections between a user and their friends. An advantage of this approach is

that the content of the items does not need to be machine analyzable, which means that

even complex items can still be recommended without algorithms capable of analyzing

the content itself. Disadvantages are, amongst others, the cold start issue, sparsity - due

to a large amount of items, many items have only few ratings - and difficult scalability

- the computation power needed to give recommendations for many users and items is

extremely high [Ricc 15].

2.1.3 Hybrid Systems

Combining these two approaches into a hybrid system can make the recommendations

even more accurate [Jann 10]. Such a system tries to combine the advantages of both fil-

tering techniques. [Burk 07] systematically compares various recommender systems con-

sisting of two parts, and defines seven different hybridization techniques. These include

weighted, when the score of different recommendation components are combined nu-

merically, cascade, when certain recommenders are prioritized over others, and feature

combination, which combines different sources of information to create one single recom-

mendation algorithm. Netflix, for instance, is using a mixed technique by both comparing

watching habits of similar users, and recommending movies or series with user-preferred

characteristics [Gome 15].

CHAPTER 2. RELATED WORK 10

2.2 Mobile Recommender Systems

In the last few years, smartphones have become more powerful and mobile internet avail-

ability has improved significantly. Therefore, recommender systems have especially found

their way into mobile devices. Information from the web can be used to enhance the expe-

rience of users, while they can at the same time directly interact with their surroundings.

Recommender systems have originally been used on the web in the context of movie or

music discovery, in e-commerce, or to personalize search results. The best fitting results

are created through observing user behavior and in this way finding out personal pref-

erences. Now, for the use in mobile devices, it is especially relevant for the users to get

recommendations from their direct surroundings, thus drawing a focus on the concepts of

context and location.

2.2.1 Definitions and Tasks

As described before, classic recommender system recommend a set of interesting items

for each user according to their preferences, e.g. through collaborative or content-based

filtering. Location-based recommender systems focus not only on user preferences,

but additionally give more information related to the location of a user, for instance

to calculate routes, give traffic information, and find restaurants, places or even friends

which are nearby [Schi 04]. In the case of a system like Google Maps that suggests places

to see, restaurants to visit, or public transportation, the most important factor for giving

personalized recommendations is the user’s position.

Solely web-based recommender systems focus on recommending content that peo-

ple like, while computing implicit relationships between items via certain algorithms, e.g.

through user feedback. Mobile recommender systems also take spatial relationships

between items, e.g. geographical distances between places, into consideration, and there-

fore act on a context-aware level [Adom 15].

The user context is a multidimensional characteristic which can be classified in different

ways. [Adom 15] mentions three theoretical aspects: The observability, i.e. the knowl-

edge of a recommender system about the contextual factors, can be fully, partially, or not

at all present. The behavior of contextual factors, i.e. whether and how their structure

and importance change over time, can be static or dynamic. The contextual information

can be obtained in a number of ways, depending on the use case: explicitly, implicitly or

inferred. [Sche 15] categorizes context into two classes: Environment-related context

CHAPTER 2. RELATED WORK 11

means features measured by sensors on the user’s mobile device or obtained from external

information services. Examples include location, current time, weather or temperature.

User-related context contains high-level information about the user. Examples include

the user’s activity, emotional state, or social and cultural background. It is more difficult

to measure and can be inferred from environment-related context.

According to [Lath 15], there are three different tasks or use cases for mobile recommender

systems:

1. Goal-oriented search: ”Where can I eat around here tonight?” Users who intend

to take an action want to receive personalized results.

2. Location discovery: ”Which places around here are interesting? What can I do

tonight?” Users want to get to know their environment and receive actual, up-to-

date information.

3. Routing and transport: ”How can I get from here to there?” Users want to get

directions to be mobile, which is especially relevant when being in a new city for

the first time.

[Lath 15] defines three important features for such mobile recommender systems: data,

algorithms and evaluation. These will be discussed in detail in the following, along with

various examples of existing recommender systems.

2.2.2 Data

First of all, data has to be collected from the users and the surroundings to record signals

which reflect user preferences. The amount of data in mobile context is larger than in an

environment without mobility. There are three means of collecting data: Explicit data is

created when a user likes, rates or checks in at a place to share his location with others.

Several examples are widely known on the internet, such as Foursquare or Yelp, which

are location-based recommendation services, the latter of which collects user reviews of

places. The user could even be asked directly about his own personality. By performing

activities such as watching videos or clicking on links, users generate implicit data. On

mobile devices, they can, in addition to that, also take photos or track their physical

movements; both actions produce a lot of data. Another feature of mobile devices are

their various sensors which create sensor data, for instance in the form of location and

mobility tracking.

CHAPTER 2. RELATED WORK 12

When a user checks in multiple times at one place, it becomes visible that the user

has a preference towards this place [Hu 08], although it could also simply mean that a

user is visiting the place periodically in his daily routine, e.g. due to work, which covers

between 50% and 70% of a user’s mobility [Cho 11]. Therefore it is a main challenge for

recommender systems to not only show old, known locations, but also enable the discovery

of new places.

Mobile recommender systems need databases of Points of Interests (POIs). These can be

generated either by analyzing explicit data - as e.g. Foursquare does [Noul 11], or implicit

data - as e.g. the image- and video-hosting website Flickr does by clustering geo-tagged

photos [Cran 09]. Out of this information, features of places can be extracted. Usage

scenarios of the analysis of user behavior through geo-tagged photos include identifying

trips or analyzing tourist navigation and travel behavior in cities, which can in return be

used to find interesting items for users [Gira 08]. Other used information includes mobility

data from the mobile network like GSM, or positioning data such as GPS [Zhen 08].

Constant usage of these sensors gives more details about places visited by the user, but

at the same time drains the battery quickly, which is not as energy efficient as desired in

mobile context [Rach 10]. It is possible to get a very detailed user profile using all the exact

information, but the data collection must at the same time take place efficiently. Another

challenge for a gapless collection of information is that e.g. Foursquare users do not always

check in to every place they visit, indirectly manipulating the data through this behavior.

All gathered data therefore has to be processed to make accurate recommendations. All

in all, data acquired in a mobile context is very dynamic, thus requiring a recommender

system to efficiently learn from both users and recommendable items.

Smartphone sensors can also deliver helpful data for monitoring, analyzing and detecting

user activities for different purposes [Lane 10] [Khan 13]. One area is activity recog-

nition, i.e. the context of a user, and whether he is walking, sitting, driving or talking

[Chou 08]. It is also possible to analyze the transportation mode, using e.g. the ac-

celerometer and GPS sensor [Sten 11]. Even the sociability and user interactions can be

measured with Bluetooth, accelerometer and microphone [Rach 11].

2.2.3 Algorithms

The obtained data needs to be further processed with the right algorithms. Speaking

about a recommender system which recommends items, i.e. places, based on ratings, the

algorithms often make use of supervised learning approaches to take characteristics like

the distance between places into account. Generally, such a recommender system contains

CHAPTER 2. RELATED WORK 13

a set of items as well as of users, who rate a fraction of all items. The system has to

recommend interesting items by predicting ratings and ranking items. In mobile context,

challenges for the prediction include finding out whether the user is a local, on a travel or

on a business trip, and whether he was satisfied with a visit or not, because these factors

change the user’s perception of an item. Machine learning techniques can help to address

these problems and to further enhance the accuracy of predictions.

[Lath 15] defines four variants of this prediction problem in more detail: the recommen-

dation of categories, next places, new places, and routes.

1. In categorical recommendation, items of certain categories are recommended,

e.g. restaurants, shops or sights [Ardi 11]. Here the ranking of items takes place

mainly based on the location, perhaps also on factors like the average cost of a

venue.

2. When predicting the next place to visit after the current one, several inputs are

taken into account to give accurate recommendations: the user and both his prefer-

ences and location history, the current location, and the current time. The formula

used by the algorithm therefore depends on various aspects [Noul 12a]. A challenge

here is again that a user may visit many places only because it is part of his daily

routine.

3. Recommending new places requires a formal definition of discovery, which refers to

visiting previously unvisited places, and rediscovery, which means that venues which

have not been visited for a certain amount of time are visited again [Noul 12b]. The

cold start problem is a challenge here as well, since not all necessary data might be

initially available.

4. As a last variant, routes can be recommended, similar to suggesting a few next

places. The additional aim is to find an optimized route according to the user’s

preference, taking e.g. the time to travel between two destinations, the opening

times of venues, or the best time to visit them into account.

In addition to these, things such as the recommendation of (social) events are also possible

[Skla 12].

Many algorithms use the method of collaborative filtering, representing users and venues,

i.e. items, as vectors. Due to the context-aware, location-based nature of mobile recom-

mender systems, recommendations must be pre- or post-filtered, so that results are only

shown for a particular geographical area [Adom 15].

CHAPTER 2. RELATED WORK 14

[Lath 15] defines two categories that can be used by algorithms for predictions: popularity

and proximity. When recommending places, their popularity is not necessarily personal-

ized, but a very important factor. Popularity can be measured by the number of visitors,

frequency of visits or within certain categories. Proximity measures only take the cur-

rent position into consideration and recommend the nearest places [Quer 10]; yet this is

a powerful and reasonable factor, because people tend to travel rather shorter distances.

To get more personalized results, supervised learning can also be applied on the users’ mo-

bility preference data to find out the likelihood of them visiting specific places [Noul 12a].

[Lath 15] mentions three features: place, user and structure.

1. Place features can include the popularity of a place in general, at a specific time,

in its category, e.g. restaurant or bar, or in its local area.

2. User features are for instance the amount of times a user has already visited a

certain place or places of a certain category, his overall historical mobility, or even

the mobility of his friends.

3. Structural features investigate the geographical distance between places or their

rank distance, or, if enough data is available, the transitions between places, i.e.

how likely it is that a user moves from A to B.

The algorithms can now create an instance for all user visits, and use them to train a

supervised learning approach, e.g. decision trees or linear regression [Noul 12a]. Other

methods use random walks: The set of users and venues, i.e. items, is represented as

a graph, with nodes for all users and venues. If a user visits a venue, a link is created;

weights on links stand for the transition probability. In the case of social networks, there

can also be links between users [Noul 12b]. Algorithms from the field of machine learning

include: similarity measures such as the Euclidean distance or cosine similarity applied

on a suitably prepared set of data to find the best recommendations; classification and

regression algorithms such as k-nearest neighbor search to categorize items; clustering

algorithms such as k-means, which divides a set of items into k equally divided clusters, or

DBSCAN, which uses a density-based approach to find groups of points that are closely

packed together.

2.2.4 Evaluation

Eventually, an evaluation of the system needs to take place. This can be achieved through

quantitative and qualitative methods. For quantitative methods, two sets, one for train-

ing and one for testing, are generated from the acquired data and tested to measure the

CHAPTER 2. RELATED WORK 15

predictive power of the learning algorithms by using ranking metrics [Quer 10]. Qual-

itative methods include performing surveys or doing interviews with test users of the

system. This gives a more detailed understanding about the users’ experiences, but the

scalability can become a problem, when trying to get a set of participants that is large

enough for collecting sufficient data. In general, the approach is beneficial though, because

real human users are testing the system and give their personal opinions, which can differ

a lot from the results of the automated evaluation and eventually of the recommendations

generated by the algorithms.

2.2.5 Summary and Challenges

As a conclusion, it is necessary to consider not only aspects also used in classic, web-based

recommender systems, such as discovering new or other, diverse items, but also special

characteristics, for instance the distance between items, the time of day or the venues’

opening hours, to build a useful mobile recommender system. There are several chal-

lenges according to [Lath 15]. The first is the increased consideration of user context:

Recommendations need to take not only the time of day or location into account, but also

whether the users are alone or in groups, their activity - sightseeing, work, commuting -

or mood [Adom 15]. Another are hierarchical item sets: Items are dynamically chang-

ing, their characteristics and structures have hierarchical and spatio-temporal relations

[Jamb 10]. In particular, there is a trade-off between distance and preference: Nearby

items are not necessarily the user’s most preferred; likewise, items which are far away

could be favored anyway. A recommender system must find an appropriate balance be-

tween these two factors. Privacy questions also arise: How can it still be guaranteed, if

so much data is collected and analyzed and location tracking takes place? One possible

solution is to obfuscate the data [Quer 11]. Recommender systems can also proactively

send notifications to the user [Vico 11]. However, constantly pushing relevant information

might also interrupt the user too often. As a last point, there is also the possibility

of different users and items: Recommendations do not necessarily always have to be

made from places for people; a wide range of other application fields exists as well.

In addition to that, mobile recommender systems have to face other challenges as well:

One characteristic of mobile data is its huge complexity, because it is heterogenous

and noisy [Ge 10]. Similarly, many recommendations within one system are not always

suitable for all regions, for instance products which are only sold to specific markets. A

service running on a mobile device furthermore requires that computation quantity and

energy consumption remain as low as possible.

CHAPTER 2. RELATED WORK 16

Table 2.1 summarizes the mentioned features of mobile recommender systems.

Tasks (2.2.1)
Data sources
(2.2.2)

Place recomm.
types (2.2.3)

Prediction
categories (2.2.3)

- Goal-oriented search
- Location discovery
- Routing and transport

- Explicit
- Implicit
- Sensors

- Categories
- Next place
- New places
- Routes
- Events

- Popularity
- Proximity

Mobility
features (2.2.3)

Applied algorithms (2.2.3)
Evaluation
methods (2.2.4)

- Place
- User
- Structure

- Supervised learning
- Random walks
- Similarity measures
- Classification and regression
- Clustering

- Quantitative
- Qualitative

Table 2.1: Features of mobile recommender systems

2.3 Tourism Recommender Systems

One advantage of recommender systems is that they clearly reduce the overload of infor-

mation which is present on the internet. When making recommendations for tourists, they

can suggest various kinds of content to enhance their experience, including media such

as photos or videos of the places to visit or ratings of other users for a specific location.

These ratings, for instance, can have an impact on the user’s choice especially when they

were given by friends of the user, thus giving recommender systems even a role as social

actors [Yoo 15].

Current developments in fields like web technologies, wireless networks, and social net-

working make it possible to deliver effective and accurate recommendations to the tourist,

which consider the users’ interests and preferences, as well as their social and environ-

mental context, thus delivering tailored context-aware services. Advancements in mobile

computing make information accessible everywhere at any time. According to the clas-

sification of [Gava 14], existing mobile recommender systems for the support of tourists

from three different areas will be briefly introduced in the following.

1. Recommendations for attractions in cities, for instance museums, cultural monu-

ments or churches, are a popular application area for mobile tourism recommender

CHAPTER 2. RELATED WORK 17

systems. The graphical presentation of attractions can for example be done as

a list or by highlighting icons on a map interface. While many systems base their

computation on preferences stored in the user’s profile, afterwards filtering by the

location [Nogu 12], it is nowadays becoming more common to consider also contex-

tual parameters, for instance time, weather, social environment, or the user’s mood

[Sava 12]. The type of recommended content can be text and images, sound and

video, maps, or augmented reality views. [Neid 14] claims that tourism is a complex,

emotional experience. The described system elicits and expresses user preferences

by letting the user choose between pictures that illustrate certain types of travel

destinations. After the user has selected pictures which look appealing to him, a

travel profile is generated, mixing multiple types of travellers and trying to predict

travel behavior. Recommendations are based on this profile.

2. Suggestions for tourist services, for instance restaurants, hotels or information

services, are important for city visitors as well. Here it is especially relevant that users

might select characteristics which they expect their recommendations to have, and

in this way give the recommender system constraints already beforehand; these differ

depending on the service. More sophisticated systems try to model the probabilistic

influence of input parameters on the values attributed by the users towards the

services, e.g. type and price for restaurants or hotels, or day time and temperature

for the user context, and calculate a score for the specific place using advanced

algorithms [Park 07].

3. Many recommender systems focus on collaborative user-generated content, ad-

ditionally featuring characteristics of social networks. They try to encourage the

users to share their experiences while exploring new places [Sava 12], while at the

same time automatically logging user activity, and providing a central location for

managing tourist-relevant content.

Besides these areas, there are also systems that recommend routes and tours or

multiple-day trips.

Since mobile recommender systems in tourism are complex, diverse and multidimensional

and feature various architectural, technological and functional aspects, [Gava 14] classifies

them within three different schemes, focusing on the used methods for fetching content

relevant for tourists, finding out user requirements, considering situational context, and

ranking the recommended items in a specific order. The three categories are briefly intro-

duced in the following, in combination with a few practical examples. Figure 2.2 shows

an overview for an architecture of such a tourism recommender system.

CHAPTER 2. RELATED WORK 18

Figure 2.2: Generic architecture of a mobile tourism recommender system (from [Gava 14])

2.3.1 Architectural Styles

Web-based architectures clearly differ between the server part, which manages all the rec-

ommendation logic, and client part, which acts just as the presentation medium [Gava 12].

These systems are the most powerful, due to the server having high computational re-

sources. However, network connectivity is required, since otherwise the client only has

basic offline functionality, although still featuring user interface widgets and persistent

storage.

Standalone architectures are full mobile applications, which include all the recommen-

dation logic and tourist content, for example mTrip 1. They are installed directly on the

mobile device, and are capable of working offline. As a downside, it is due to the smaller

1https://www.mtrip.com/

https://www.mtrip.com/

CHAPTER 2. RELATED WORK 19

feature capabilities not possible to use recommendation techniques which are based on

matching different user profiles, for instance collaborative filtering, within these systems.

Web-to-mobile architectures combine these two approaches: Users utilize a web interface

first, where they select all the content and build their tourist plan. Then they switch

to the app installed locally on the mobile device, which basically operates offline, but

can connect to a server on-demand, for example to update public transportation data

[Kent 07]. Similar to standalone architectures, collaborative filtering is not possible here

either.

2.3.2 User Involvement

In pull-based recommender systems, the delivery of recommendations is only performed

upon user request [Kent 07]. In this way, the information delivery is controlled, limited,

and less intrusive for the user.

Reactive recommender systems react to changing situational context when generating

recommendations, independent from explicit interventions through the user [Bell 07]. The

user might be able to define own settings for the handling of changing context in this type

of system.

Proactive recommender systems go even one step further: They use not only historic and

current context, but even pre-cache appropriate content from the server on the mobile

device by trying to predict future context [McCa 06]. This enables high responsiveness

and secures from unstable network conditions. With high speed mobile networks becom-

ing widespread it lost on meaning nowadays, but can still be considered in cases where

recommendations are changing quickly, or when the user must not be distracted through

the system, for example while driving.

2.3.3 Recommendation Criteria

User constraints-based recommender systems create a user profile by finding out user

preferences either xplicitly - e.g. in the form of a survey where the system asks its users

about their demographic information and recommendation wishes - or implicitly through

the users’ interaction with the system. The systems are all location-aware and use to

some extent contextual information. However, they do not use an actual recommendation

engine, so they do not have domain-specific knowledge. One example is DailyTRIP, a

mobile, web-based tour planning system, using location, user preferences, and the opening

CHAPTER 2. RELATED WORK 20

days and times of places to maximize the ”profit” for users, by suggesting them to visit as

many relevant places as possible, while not exceeding the specified travel budget [Gava 12].

In the mobile app mTrip, a similar system is used where the user can select his desired

travel destinations, and the app generates trip itineraries accordingly, in addition making

use of augmented reality features to improve the user experience while visiting sights.

Pure location-aware recommender systems are early versions of context-aware systems,

when smartphones were still new and not equipped with many sensors or functionalities;

they consider only the location for the calculation of recommendations and are therefore

unidimensional. One example is a 3D Geographic Information System (GIS), which uses

a hybrid recommmendation engine, but limits recommendations only to an area around

the user’s location; in the mobile app, a three-dimensional representation of the user’s

area is shown [Nogu 12].

Context-aware recommender systems on the contrary act on a multidimensional base:

Due to the evolution of ubiquitous mobile devices with high computational power, con-

textual dimensions can be inferred and added implicitly. The recommendations can be

personalized and adjusted in a very accurate way through various data sources, including

smartphone sensors [Camp 12], web services delivering information, or suitable support-

ing infrastructure. Many different parameters can be used in addition to location, for

instance time, season, weather, monetary budget, means of transport, mobility history

and social environment. One example is ”I’m feeling Loco”: Recommendations are based

on inferred user preferences as well as constraints of location, time, and automatically

recognized transportation mode. The system uses Foursquare data to generate the user

profile; the user just has to state his own mood, i.e. the type of places he is currently

interested in visiting [Sava 12]. Explicit user critique, where the user gives feedback for a

recommendation, e.g. on a scale from one to five, can be used, too [Ricc 07].

2.3.4 Summary and Challenges

Amongst mobile recommender systems, tourism is a dominating application field. The

falling of limitations for mobile devices and increase of features brings new opportunities

and developments, but challenges as well. [Gava 14] mentions the demand for intelligent

user interfaces using techniques from human-computer Interaction, which is especially

important because the proper visualization of data on a small screen can be difficult,

though it is essential to be able to see all relevant information at a glance. Within this

area, gesture [Lei 09] or hands pointing recognition [Khos 09] can be used as new means of

user interaction to provide even more accurate recommendations. Furthermore, sufficient

CHAPTER 2. RELATED WORK 21

context inference mechanisms are needed [Ricc 07]; if a user is not explicitly asked

about his preferences, the recommender system might make wrong assumptions about his

context and subsequently deliver incorrect recommendations. Another aspect is the trade-

off between user effort and accuracy: It might be hard for the user to evaluate his exact

preferences before getting offered an actual recommendation - he might simply not be able

to extensively formulate his interests or know what he is looking for already beforehand.

Relying on much privacy-sensitive information like demographics, location and interaction

history or user behavior, the privacy protection of user profiles is essential, especially in

the mobile field, where identity threats become more common. As a last point, a practical

issue is mentioned: Many recommender systems focus either on attractions or on tourist

services. However, if for example hotels or restaurants are recommended, not only their

price or type is important, but also their local distance to the attractions. For this reason,

a more unified recommendation perspective focusing on both aspects at the same

time is needed.

Table 2.2 summarizes the mentioned features of tourism recommender systems.

Recommendation
areas (2.3)

Architectural
styles (2.3.1)

User involve-
ment (2.3.2)

Recommendation
criteria (2.3.3)

- Attractions
- Tourist services
- User-generated

content
- Routes and tours
- Multiple-day trips

- Web-based
- Standalone
- Web-to-mobile

- Pull-based
- Reactive
- Proactive

- User constraints-based
- Pure location-aware
- Context-aware

Table 2.2: Features of mobile recommender systems

CHAPTER 2. RELATED WORK 22

2.4 Computer Vision and its Applications

Computer vision deals with techniques of computers for gaining high-level understanding

from the diversely formed data of digital images or videos, trying to automate tasks

that the human visual system is also capable of. Tasks include methods for acquiring,

processing, analyzing and understanding digital data, to extract information from these

images and videos and transform it into descriptions of the real world. Such artificial

systems and models are for instance constructed with the aid of geometry, physics and

statistics. Three technologies within the area of computer vision are briefly introduced in

the following; these are activity, object and emotion recognition.

2.4.1 Activity Recognition

Activity recognition tries to recognize the activities and goals of a human from a series

of observations on his actions and the conditions of the environment around him. The

recognition of plans, goals and behavior is subject of research in this area, as well as

the estimation of locations. There are different types of activity recognition that are all

based on data from sensors, dependent on the number of people for which activities

are recognized: either for single users, groups, or multiple users. Data mining and

machine learning techniques are used to model human activities [Li 14]. These currently

widely discussed topics, as well as the growing amount of sensor data and calculation power

in smartphones make it possible to model human activities even in a mobile environment.

It is therefore under research how ubiquitous computing can be better adapted to users’

needs.

Usually, the noisy input data is analyzed step by step on several levels: First, with the

help of statistical learning it is aimed to detect humans and find their locations. On the

next level, statistical inference recognizes human activities extracted from tracking their

location sequences and environmental conditions. On the highest semantic level, statistical

and logical reasoning find and evaluate the goals of humans extracted from the activity

sequences.

The approach of logic and reasoning keeps track of all explanations for observed actions

which are logically consistent and therefore considers all possible plans. At probabilistic

reasoning, probability theory and statistical learning are used to draw conclusions on

actions, plans and goals under conditions of uncertainty. Research focuses, amongst others,

on the identification of individual humans performing routine daily activities based on

CHAPTER 2. RELATED WORK 23

machine learning [Hodg 07], the use of sensors to detect human plans, and on finding out

the transportation mode of a user via RFID or GPS. New methods based on data mining

define a pattern-based classification problem and attempt to describe significant changes

between any two activity classes of data, so that sequential, interleaved and concurrent

activities can be recognized in a unified solution [Gu 09]. Another approach in this area is

to use two-dimensional corners (for space and time) to stage a process that hierarchically

learns the most distinctive and descriptive features of an action or activity in an efficient

way [Gilb 11].

There are several applications within fields related to computer science, where person-

alized support for the user is offered, e.g. human-computer interaction, as well as in other

disciplines, e.g. medicine. Practical applications can be also found in user interface de-

sign, robot learning and surveillance. Current research tries to use depth cameras like the

Microsoft Kinect to build real-time human models and recognize activities which had pre-

viously been unknown [Piya 13]. Steps in the process of vision-based activity recognition

include detection of humans, tracking them, recognizing their activities, and eventually

evaluating them. Further applications are also the assistance of sick and disabled people

[Poll 03], security-related topics, logistics support and location-based services.

2.4.2 Object Detection and Recognition

Object recognition tries to find and identify objects in an image or video sequence. It

is a challenging area for automated evaluation through computers, because objects are

usually visible from different view points, they have varying sizes, scales or rotations, and

the view might be partially obstructed. Exemplaric applications include face detection,

content-based image indexing and visual positioning and tracking [Amit 14]. Methods to

detect and recognize objects can be categorized into the following [Labe 14]:

1. One approach is to create models of the objects similar to computer-aided design

(CAD), which can also be used to recognize a model by parts.

2. Appearance-based methods use example images, so-called templates, to target the

circumstance that varying conditions make the objects look differently, e.g. lighting,

viewing direction or shape. Exemplary methods are edge, greyscale and gradient

matching, divide-and-conquer search, histograms, or large modelbases.

3. Feature-based methods use searches to find matches between object and image

features; a single position of an object must account for all feasible matches. Methods

extracting features from objects and images include surface patches, corners, and

CHAPTER 2. RELATED WORK 24

linear edges. Sub-categories of feature-based recognition are interpretation trees, hy-

pothesize and test, pose consistency, pose clustering, invariance, geometric hashing,

scale-invariant feature transform, speeded up robust features and word bags.

4. Genetic algorithms are the newest development of research and reach extremely

high accuracy [Lill 13]. Their advantages are that they work even without knowing

a given dataset beforehand and that they can create recognition procedures on their

own.

Table 2.3 summarizes the mentioned features of activity and object recognition.

AR number of
users (2.4.1)

AR detection
levels (2.4.1)

AR approaches (2.4.1) OR methods (2.4.2)

- Single user
- Group
- Multiple users

- Locations
- Activities
- Goals

- Logic and reasoning
- Probabilistic reasoning
- Data mining

- CAD
- Appearance-based
- Feature-based
- Genetic algorithms

Table 2.3: Features of activity and object recognition

2.4.3 Emotion Recognition

Emotion recognition identifies human emotion, usually from interpreting facial expressions

from images. In emotion recognition performed by computers, techniques from signal

processing and machine learning are used. It can be aimed to help companies sell products

more effectively as well as to predict attitudes and actions. Further applications include

real-time recognition of human emotions and marketing research. In embedded systems

like cars, emotion recognition can for instance be used to measure the attention span of

its users [McDu 13].

However, the application of emotion recognition is not limited to pure computer vision

tasks such as the interpretation of facial expressions, but can be used in several other

areas as well, as will be explained in more detail later on in the section about emotion

analysis. This is also influenced and brought forward by recent developments in the field

of egocentric vision, which is described in the following.

CHAPTER 2. RELATED WORK 25

2.5 Egocentric Vision

Egocentric or first-person vision provides a human-centric perspective of the visual world.

It includes ways of using, processing and evaluating images or videos taken from the user

perspective. Often egocentric cameras are mounted on the user, for instance on his head;

in this way, they can easily gather visual information from everyday human interactions.

Egocentric images and videos from wearable cameras enable a new top-view perspective

on actions. The area is highly related to and a part of computer vision and can have a

positive impact on tasks from this field, such as visual detection, recognition, prediction

and behavior analysis.

A practical example showing the influence of egocentric vision and its potential for activity

and object recognition is shown in [Nguy 16]. The paper provides a literature review on the

video-based recognition of activities of daily living (ADL), which is useful in ambient as-

sisted living systems to support the independent living of older people. The authors claim

that the main problem with classic camera-based systems is the limited field of view, and

that current research on the recognition of these activities is mainly focusing on recogniz-

ing objects present in the scene, especially those associated with specific tasks. However,

the problem with object-based approaches is their bad performance in unconstrained sce-

narios, i.e. in everyday situations during which the setting is not like in a constrained lab

where subjects execute a certain set of activities always in the same environment; instead,

they act in different environments. Wearable cameras can help addressing this issue by

recognizing human behavior following a hierarchical structure, during which every level

contains more semantic info and a longer time span: At the beginning, human motion is

detected, which is done by finding the area of interest through eye tracking and detecting

objects and hands. Afterwards, the action is defined through feature extraction and clas-

sification, and the activity as a combination or sequence of actions. Eventually, a certain

human behavior is inferred. To verify the success rates, such techniques can be applied

on different datasets.

[Raja 18] goes one step further: The authors claim that nowadays connected computing

devices feature various sensing capabilities which can be used to gain insights about

individual activities, locations, and social connections. Beyond that, they see the potential

to not only track and link simple activities, but also detect sentiment from environmental,

on-body and smartphone sensors. An affect map to gain data about emotion and mood

of humans from these sensors is proposed, enabling the recognition of emotion and mood

and large-scale affect sensing.

CHAPTER 2. RELATED WORK 26

By taking advantage of the first-person point-of-view paradigm, there has been a lot of

other progress recently in areas like personalized video summarization, activity analysis

with inside-out cameras (a camera to capture eye gaze in combination with an outward-

looking camera), recognizing human interactions and modeling focus of attention. In the

2016 ”Workshop on Egocentric (First-Person) Vision” 2, many new innovations and

developments from the area of egocentric vision were introduced and discussed, namely

in these three categorized areas:

• recognition advancements: activity, hand movements, head gestures in conver-

sations, interactions through pointing gestures, detection of text in stores

• image and video analysis: finding topics of images, scene understanding, discov-

ering objects of joint attention, highlighting personal locations of interest, detecting

social interaction

• assistive technologies: generating and delivering notifications for missing actions

or forgotten items, place recognition for augmented reality wayfinding assistive tech-

nology, detecting visual and physiological signals

2.6 Emotion Analysis

Emotion recognition, which was mentioned before, can also be used to detect emotions

in textual messages, or determine the type of emotion in a picture with any content. Pa-

pers examining textual emotion detection and image emotion recognition shall be

briefly introduced in the following. To get a proper definition of emotion and what this

construct actually means, two theories of psychology which have widely influenced further

research in the field of textual and visual emotion analysis are described beforehand.

2.6.1 Definition of Emotion

The first theory is Russell’s Circumplex model of affect [Posn 05], which uses two

dimensions for the categorization of emotions: valence and arousal, or pleasantness and

activation, on the horizontal resp. vertical axis. The model is illustrated in Figure 2.3.

Possible combinations are consequently high pleasantness and high activation (with the

emotions alert, excited, elated and happy), high pleasantness and low activity (contented,

serene, relaxed, calm), low pleasantness and low activity (sad, depressed, bored), and low

2http://www.cbi.gatech.edu/fpv2016/

http://www.cbi.gatech.edu/fpv2016/

CHAPTER 2. RELATED WORK 27

Figure 2.3: Russell’s Circumplex model of af-
fect (from [Posn 05]) Figure 2.4: Ekman’s six basic emotions

pleasantness and high activity (upset, stressed, nervous, tense). The second important

model is Ekman’s theory of six basic emotions: anger, disgust, fear, happiness,

sadness and surprise [Ekma 99]. This is illustrated in Figure 2.4 (from 3), showing

facial expressions of people, each of which represents one of the basic emotions.

2.6.2 Textual Emotion Detection

[Hasa 14] claims that it has become quite common to express feelings and opinions in social

media. Automatically classifying text messages can help to identify anxiety or depression,

or measure the mood of both individuals and groups. To model emotional states, the

authors use Russell’s Circumplex model. Twitter messages are used as the input data, and

the hashtags contained in them as labels. A database of over 130.000 tweets is analyzed,

tweets are investigated considering features like used vocabulary, emoticons, punctuation

and negations. A classifier is trained and different machine learning algorithms are applied

to categorize the tweets and assign hashtags to one of the emotion classes Happy-Active,

Happy-Inactive, Unhappy-Active, and Unhappy-Inactive, reaching high precision.

Similarly, [Robe 12] uses Twitter as the source of analyzable text. The authors point out

the special feature of micro-blogging compared to other sources of text that personal

emotions are expressed in a different way there, because they are shared on a frequent

base and the messages have to be put into a strict length limit, as this is the case for

3https://sites.google.com/site/societyemblems/

https://sites.google.com/site/societyemblems/

CHAPTER 2. RELATED WORK 28

tweets (140 characters limit). In addition to the six basic emotions defined by Ekman, love

is supplemented. The paper creates a system that discovers and identifies these emotions

within tweets and analyzes their distribution within a large number of text. It is found

out that disgust and happiness are the most commonly used emotions in tweets, while

love or hate letters as well as suicide notes, which have been investigated in other studies,

are dominated by different emotions. Many semantic categories for both emotions and

discussed topics (animals, politics, religion, current news, etc.) are defined, the linguistic

style and features are extensively researched.

[Sutt 13] analyzes a database of six million tweets regarding their emotion. The described

model selects bipolar pairs of emotions from the ”Wheel of emotions” defined by Plutchik;

the four pairs are joy and sadness, anticipation and surprise, anger and fear, trust and

disgust. All tweets are labeled automatically - in addition to hashtags and emoticons,

emojis are considered as well - and these labels are combined to train classifiers.

Whissell’s ”Dictionary of Affect in Language” [Whis 09] was created to measure emotions

in any verbal material, like freely produced text, word lists or literature passages. It

originally contained over 4.000 specifically emotional words, each word in the dictionary

being accompanied by two scores - rated by humans - for the affective dimensions of

pleasantness and activation, as defined by Russell. Low scores mean that the word has

a rather unpleasant resp. passive connotation, high scores mean that the word has a

rather pleasant resp. active connotation. Later, the dictionary was revised to include

8.742 words, which increased its applicability for analyzing natural language, reaching

an overall matching rate of 90%. Besides pleasantness and activation, a third dimension

called imagery, describing how hard, resp. easy it is to form a mental picture of a word,

was added.

2.6.3 Image Emotion Recognition

[You 16] aims to show means how to predict the emotional reaction of people towards

images, using computer vision techniques and Convolutional Neural Networks (CNN).

The paper builds a large image data set with photos from Instagram and Flickr, using

hashtags as weak labels for eight emotions, which are similar to Ekman’s basic emotions:

amusement, anger, awe, contentment, disgust, excitement, fear and sadness. Pictures with

more than one emotion are removed, duplicates are deleted, and humans are utilized to

verify the labels. In this way, over 23.000 photos are used to train two neural networks:

the first by fine-tuning an existing pre-trained model with the verified pictures, and the

second by fine-tuning another, using the weakly labeled pictures from the beginning. After

CHAPTER 2. RELATED WORK 29

the calculation of the convolutional matrices, a randomized accuracy test shows that the

first network recognizes over 58% of the pictures tagged by humans correct, outperforming

the 32% of the existing pre-trained model. For three public datasets of exemplary photos,

the accuracy rate is even over 80% for most of the emotions.

[Mach 10] uses theoretical and empirical concepts from psychology and art for the task

of image emotion classification. Various low-level features of the images, such as color

(e.g. saturation, brightness), texture, image composition (e.g. level of detail, dynamics),

and image content (e.g. faces, visible skin), are extracted and combined to represent the

emotional content of an image. The eight emotions used for classification are the same as

in [You 16].

[Kim 17] uses Deep Neural Networks (DNN) to analyze object, background and semantic

information of images and predict emotions based on it. The paper uses the Circumplex

model of Russell; all pictures receive a rating for each of the two dimensions, valence and

arousal, on a scale from one to nine. As the source of data, the authors use both pictures

from Flickr tagged with emotion keywords, and pictures from the above introduced paper

[You 16], adding up to a total of over 10.000 images in the database. Again, humans

complete the task of emotion classification, which shows that overall more positive than

negative images are shared. After extracting color, local, object and semantic features, the

paper is stating that especially the contained object is higly correlated with the emotion

expressed in a picture. The suggested learning emotion prediction model based on DNN

performs scene segmentation, object classification, and takes low-level image features into

account, reaching very high accuracies of over 90% for the rating of both valence and

arousal. An example is shown in Figure 2.5.

Figure 2.5: Example pictures with predicted and ground truth values for valence resp. arousal, and
resulting accuracy (from [Kim 17])

Chapter 3

Design of an Emotion-based

Recommender System

In this chapter, the conceptional architecture, i.e. prototype, of a recommender system for

city visitors is designed, described and implemented, including visualizations and imple-

mentation specifications for its components, like used programming languages, libraries,

tools and other technical details, adding up to a full documentation. The aim is to get a

specified model of how to implement a recommender system based on all the mentioned

details, and to explain step by step how the implementation of the design is performed.

The organization and design of the system are clarified by extracts of the source code and

supportive graphics, which show the procedures within the system, and furthermore some

screenshots to graphically illustrate the system design.

As a general idea, the system consists of two parts, which are communicating with each

other with appropriate tools: A Python-based backend, which collects the pictures to

be recommended and calculates the recommendations within the recommender system,

and a HTML- and JavaScript-based frontend, which displays the data in an accessible

way. The recommender system fetches various data and analyzes them via algorithms to

generate personalized recommendations for places to see around the user’s location, taking

additionally his emotion into account. These recommendations are then shown to the user

on the displayed website. The connection between frontend and backend is realized via a

Python-based server.

At first, the data and information required for the recommender system is discussed

and sources for its collection compared. Images serve as one part of the input for the

recommendations - in particular public, geo-tagged pictures from Flickr, and self-made

30

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 31

pictures. Each picture represents a point of interest. From the photos, the information

associated with them is extracted - date, time taken, and geographical position - and their

emotion is analyzed by using both an API for image content analysis to receive a textual

content description, and an emotion dictionary to calculate the emotion values. To gain

insights about the picture databases that were built up in this way, a few diagrams show

information about the pictures and its contents.

In the following, the techniques used in the recommender system are described and

discussed. The personal data of the user itself is taken into account as well: His geographi-

cal position and his current emotion, i.e. mood, are considered - according to the personal

state, the system can therefore customize the personal suggestions. The system analyzes

this data together with the gathered data from the pictures to find out the places which

are closest to the user and which fit best to his own emotion, in this way generating per-

sonalized recommendations. There are many different aspects which have to be considered

in this section, including used algorithms, libraries and data structures.

Eventually, the graphical presentation of the recommendations takes part in a user-

friendly way - after all, the recommender system is there to help and assist the user and

present him the suggestions and a connection between them. Therefore, the user needs

to be provided with explanations for using the system. This section informs about the

used technologies and frameworks, such as Leaflet and Flask, how the user can provide

his own emotion and create an own picture database, and how the recommendations are

displayed in detail.

3.1 Data: Images

To collect data which can be used for the recommendations, databases of geotagged

photos initially needed to be built up. These photos had to be processed step by step:

First, their content needed to be analyzed, then they had to be categorized into, i.e. tagged

with emotions. Eventually, all information was stored in CSV files. The whole process is

done with code in the programming language Python.

3.1.1 Sources for Collecting Images

As a first step, images that are used to calculate the recommendations had to be gathered

from appropriate sources. The main data sources for the system are photos with geotags

of locations for which recommendations are performed. Therefore databases of photos

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 32

from online services - in this case, Flickr was selected - and of own pictures had to be

built up, at the same time ensuring that all relevant information about the photos was

recorded accordingly.

3.1.1.1 Flickr

The popular image sharing service Flickr offers an API 1 which has basically no restrictions

and gives simple and fast access to images uploaded on the website and their respective

metadata. Under 2 a map can be accessed which shows uploaded Flickr photos in regard

of their geographic location. As of 14.02.2018, searching e.g. Helsinki returns a number

of 107.306 geotagged photos, Munich returns 500.748 photos. The API can be tried out

under 3, but to permanently be able to access the API, an API key needs to be obtained
4, hereafter referred to as FLICKR API KEY.

In the following, it is demonstrated how three different picture databases were

built up. For each database, one example picture is selected and shown how it

was analyzed and tagged step by step until all needed information was ready.

Figure 3.1: Picture from flickr.csv showing
Esplanadi in Helsinki

1. flickr.csv will contain information about

pictures from Flickr taken in and around

Helsinki.

2. local.csv will contain information about

pictures from Flickr taken in and around

Munich, which are all downloaded and

stored locally.

3. own.csv will contain information about

pictures taken by myself.

The following parameters and its respective values were used for the API request to fetch

the 250 pictures for the database flickr.csv. The detailed API documentation can be

found at 5. Comments explain the meaning of each parameter.

1https://www.flickr.com/services/api/
2https://www.flickr.com/map
3https://www.flickr.com/services/api/explore/flickr.photos.search
4https://www.w3resource.com/API/flickr/tutorial.php
5https://www.flickr.com/services/api/flickr.photos.search.html

https://www.flickr.com/services/api/
https://www.flickr.com/map
https://www.flickr.com/services/api/explore/flickr.photos.search
https://www.w3resource.com/API/flickr/tutorial.php
https://www.flickr.com/services/api/flickr.photos.search.html

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 33

• sort: date-taken-desc //to get recent pictures, sorted by date

• has geo: 1 //to get only geotagged pictures

• lat: 60.167665 //latitude coordinates of the selected location (Helsinki, Kauppa-

tori)

• lon: 24.953678 //longitude coordinates of the selected location

• radius: 20 //radius in kilometres around the selected location for which pictures

shall be returned

• extras: date taken,geo,url l //to get the information about the date and time at

which the photo was taken, the geotags, and the URL for the picture in large size

(maximum dimension for width and height: 1024 pixels)

• per page: 250 //number of returned pictures; 250 is the maximum, because the

API request is a geo query

• format: rest //to get a response in XML format

• page: 1 //to get the first page of results

The following URL is generated when the aforementioned parameters are used:

https://api.flickr.com/services/rest/?method=flickr.photos.search&api_

key=FLICKR_API_KEY&sort=date-taken-desc&has_geo=1&lat=60.167665&lon=24.

953678&radius=20&extras=date_taken,geo,url_l&per_page=250&format=rest&

page=1

The Python code 3.1 gets the response from the Flickr API request for the provided

parameters lat (latitude) and lng (longitude).

import sys

import requests

lat = sys.argv [1]

lng = sys.argv [2]

picNumber = 100

url = ’https :// api.flickr.com/services/rest/? method=flickr.photos.search

&api_key=’+FLICKR_API_KEY+’&sort=date -taken -desc&has_geo =1&lat=’+ str (

lat)+’&lon=’+ str (lng)+’&radius =20& extras=date_taken ,geo ,url_l&

per_page=’+ str (picNumber)+’&format=rest&page=1’

response = requests.get(url)

Listing 3.1: get response from Flickr API request

https://api.flickr.com/services/rest/?method=flickr.photos.search&api_key=FLICKR_API_KEY&sort=date-taken-desc&has_geo=1&lat=60.167665&lon=24.953678&radius=20&extras=date_taken,geo,url_l&per_page=250&format=rest&page=1
https://api.flickr.com/services/rest/?method=flickr.photos.search&api_key=FLICKR_API_KEY&sort=date-taken-desc&has_geo=1&lat=60.167665&lon=24.953678&radius=20&extras=date_taken,geo,url_l&per_page=250&format=rest&page=1
https://api.flickr.com/services/rest/?method=flickr.photos.search&api_key=FLICKR_API_KEY&sort=date-taken-desc&has_geo=1&lat=60.167665&lon=24.953678&radius=20&extras=date_taken,geo,url_l&per_page=250&format=rest&page=1
https://api.flickr.com/services/rest/?method=flickr.photos.search&api_key=FLICKR_API_KEY&sort=date-taken-desc&has_geo=1&lat=60.167665&lon=24.953678&radius=20&extras=date_taken,geo,url_l&per_page=250&format=rest&page=1

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 34

Listing 3.2 shows a part of the XML response containing information about the picture

3.1.

<rsp stat="ok">

<photos page="1" pages="1628" perpage="250" total="406975">

[...]

<photo id="26135474108" owner="110842082 @N02" secret="4bf45ef66f"

server="4752" farm="5" title="Helsinki" ispublic="1" isfriend="0"

isfamily="0" datetaken="2018 -01 -25 11 :27:21" datetakengranularity="

0" datetakenunknown="0" latitude="60.167492" longitude="24.946827"

accuracy="16" context="0" place_id="GdRw9F5TUb15LVJ0hw" woeid="

23701411" geo_is_family="0" geo_is_friend="0" geo_is_contact="0"

geo_is_public="1" url_l="https: //farm5.staticflickr.com

/4752/26135474108 _4bf45ef66f_b.jpg" height_l="683" width_l="1024"/>

[...]

</photos >

</rsp>

Listing 3.2: example Flickr API response

The Python code 3.3 parses the response as XML; in case the specified number of pictures

(picNumber) is not reached (e.g. in places like at the sea, where no pictures have been

taken), it is stopped. Hereafter, unnecessary attributes which are not needed for the further

processing are removed. The attributes are sorted alphabetically (and therefore ordered

differently from the original API call). For few photos, some attributes are not present and

therefore it needs to be checked whether they exist. For a very small amount of especially

older photos, the API also does not return a link; in this case, an URL pointing to an

empty picture with 1x1 pixels will be used later.

import xml.etree.ElementTree as ET

tree = ET.ElementTree(ET.fromstring(response.content))

root = tree.getroot ()

pic = root [0]

if len (pic) < picNumber: sys.exit(’Not enough pictures here!’)

for i in range (picNumber):

del pic[i]. attrib[’id’], [...]

if ’place_id ’ in pic[i]. attrib: del pic[i]. attrib[’place_id ’]

[...]

url_l = pic[i]. attrib[’url_l ’] if ’url_l ’ in pic[i]. attrib else ’https

:// upload.wikimedia.org/wikipedia/en /4/48/ Blank.JPG’

Listing 3.3: parse response as xml, remove unnecessary attributes

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 35

Figure 3.2: Picture from local.csv showing
Königsplatz in Munich

Figure 3.3: Picture from own.csv showing
nature

The XML keys and values left for the picture 3.1 after this step are as shown in Listing

3.4.

<datetaken="2018 -01 -25 11 :27:21" latitude="60.167492" longitude="

24.946827" url_l="https: //farm5.staticflickr.com /4752/26135474108

_4bf45ef66f_b.jpg"/>

Listing 3.4: example XML keys and values left

Secondly, the database local.csv of Flickr pictures around the Marienplatz, the centre

of Munich, was created. The used parameters and values were the same as above, except

for different coordinates (lat: 48.137079, lon: 11.576006), a smaller radius of 10 kilo-

metres, and page values from 1 to 8, so that a total of eight requests to the Flickr API

was executed to collect altogether 2.000 pictures. The selection of pictures was refined:

As many Flickr users upload batches of pictures taken at the same location, these posi-

tion duplicates were removed to reach a broader variety. The results without links were

removed, too, as were the pictures (falsely returned by the API) with a date older than

2017, coming down to a number of 736 pictures. Some inappropriate pictures like such

with persons, certain indoor pictures, etc. were removed as well, so that a total number

of 642 pictures was reached in the end. The remaining pictures were now sorted alpha-

betically, after the full link to the images, and downloaded locally, so that the link prefix

https://farm5.staticflickr.com/4xxx/ did not have to be remembered any more.

The known information about the picture 3.2 so far are its parameters file name

24842660977 e86c0e0ba2 b.jpg, date taken 2017-12-29 15:04:57, and the position

coordinates latitude 48.146632 and longitude 11.565728.

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 36

The third database that was created is one of my own pictures, taken between 1.9.2016

and 1.1.2018; it consists of 4.406 pictures. The tool BR’s EXIFextracter 0.9.14 Beta 6

was used to extract the EXIF data for each picture. In addition to the file name, the

following attributes were selected for the CSV export: Date, Time, GPS latitude, GPS

longitude.

In the resulting CSV own-untagged.csv, a line containing information about the picture

3.3 looks like this: IMG 2359.JPG,2016:12:31,12:32:23,49.463844,10.565248

3.1.1.2 Instagram

To get the most recent photos, the Instagram API could have been used as an additional

source of photos. Therefore an access token to use the Instagram API was created 7.

However, since 01.10.2017, it is not possible any more to apply for the access of the

needed API endpoint, GET /media/search 8, and search for recent photos in a given area.

The required scope ”public content” is not awarded any more for new login permissions

applications 9. Instead, the Instagram Graph API was newly opened, which however is

only targeted for business users and accounts.

3.1.2 Image Content Analysis

After collecting the pictures and parsing the API response into XML for further process-

ing, the images needed to be analyzed. The aim was to get a text output of the contents

of the image for each photo, thus requiring image analysis. A closer look is taken on

the solutions provided by Google 10 and especially Clarifai 11, which eventually was

used. Other alternatives are Amazon Rekognition 12, Microsoft Azure Cognitive Services

Computer Vision API 13, and IBM Watson Visual Recognition 14.

6http://www.br-software.com/extracter.html
7https://elfsight.com/blog/2016/05/how-to-get-instagram-access-token/
8https://www.instagram.com/developer/endpoints/media/
9https://www.instagram.com/developer/authorization/

10https://cloud.google.com/vision/
11https://clarifai.com/
12https://aws.amazon.com/rekognition/
13https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
14https://www.ibm.com/watson/services/visual-recognition/

http://www.br-software.com/extracter.html
https://elfsight.com/blog/2016/05/how-to-get-instagram-access-token/
https://www.instagram.com/developer/endpoints/media/
https://www.instagram.com/developer/authorization/
https://cloud.google.com/vision/
https://clarifai.com/
https://aws.amazon.com/rekognition/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
https://www.ibm.com/watson/services/visual-recognition/

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 37

3.1.2.1 Google Cloud Vision API

The Google Cloud Vision API offers a broad variety of features based on machine learning

to analyze pictures, including label and landmark detection. It can be accessed for instance

via cURL, Python or Java 15. Usage examples provided by Google can be found under
16; GitHub projects do also exist, such as annotating images based on Python 17 or 18.

Due to the limitation of only 1500 free requests per month, and because the API does

not guarantee that a certain number of keywords, i.e. tags, is found when a picture is

analyzed, this API was not chosen.

3.1.2.2 Clarifai

Clarifai is another provider for image content analysis. It was selected due to its many

advantages, a simple to use JSON API 19, 5000 free requests per billing cycle, i.e. month,

and the visual recognition feature that delivers a high number of accurate, precise textual

predictions (keywords) for the contents of a picture, called ”concepts”. A tutorial can be

found under 20, the full API reference is at 21. Batch processing of photos is possible as

explained in 22; here, a custom solution is used instead. The API supports calls via various

methods, e.g. cURL or Python.

To use it in Python, the package clarifai 23 needs to be installed, on Windows along

with the required Microsoft Visual C++ Build Tools 24, including Windows 8/8.1 SDK.

Hereafter, an API key was obtained, in the following referred to as CLARIFAI API KEY.

The API uses so-called models for the prediction of image content: Interesting models for

this use case are the General model 25, which is able to recognize over 11.000 different

concepts, and the Travel model 26. The only discovered restriction of the API is the

15https://cloud.google.com/community/tutorials/make-an-http-request-to-the-cloud-

vision-api-from-java
16https://cloud.google.com/vision/docs/all-samples
17https://github.com/nchah/google-vision-api-image-annotate
18https://github.com/Hironsan/google-vision-sampler
19https://clarifai.com/developer/quick-start/
20https://sdk.clarifai.com/python/docs/latest/tutorial.html
21https://sdk.clarifai.com/python/docs/latest/clarifai.rest.html
22http://help.clarifai.com/api/batch-processing-with-python
23https://github.com/Clarifai/clarifai-python
24https://go.microsoft.com/fwlink/?LinkId=691126
25https://clarifai.com/models/general-image-recognition-model-

aaa03c23b3724a16a56b629203edc62c
26https://clarifai.com/models/travel-image-recognition-model-

eee28c313d69466f836ab83287a54ed9

https://cloud.google.com/community/tutorials/make-an-http-request-to-the-cloud-vision-api-from-java
https://cloud.google.com/community/tutorials/make-an-http-request-to-the-cloud-vision-api-from-java
https://cloud.google.com/vision/docs/all-samples
https://github.com/nchah/google-vision-api-image-annotate
https://github.com/Hironsan/google-vision-sampler
https://clarifai.com/developer/quick-start/
https://sdk.clarifai.com/python/docs/latest/tutorial.html
https://sdk.clarifai.com/python/docs/latest/clarifai.rest.html
http://help.clarifai.com/api/batch-processing-with-python
https://github.com/Clarifai/clarifai-python
https://go.microsoft.com/fwlink/?LinkId=691126
https://clarifai.com/models/general-image-recognition-model-aaa03c23b3724a16a56b629203edc62c
https://clarifai.com/models/general-image-recognition-model-aaa03c23b3724a16a56b629203edc62c
https://clarifai.com/models/travel-image-recognition-model-eee28c313d69466f836ab83287a54ed9
https://clarifai.com/models/travel-image-recognition-model-eee28c313d69466f836ab83287a54ed9

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 38

maximum uploadable image size of 10485760 bytes (10 Megabytes), which is not a problem

though, since the images from the Flickr API are, as discussed, requested in the ”large”

resolution, where the approximate file size is way smaller (for instance, the average file

size of the database flickr.csv is about 250 Kilobytes).

The Python code 3.5 gets the response from the Clarifai API request, using the General

model, limits the amount of concepts being returned (conceptsNumber) to 10 (this number

is reached for every picture), and parses it as JSON.

def photoToEmotion(photo):

import json

from clarifai.rest import ClarifaiApp

conceptsNumber = 10

cApp = ClarifaiApp(api_key = CLARIFAI_API_KEY)

model = cApp.models.get(’general -v1.3’)

result = model.predict_by_url(photo , max_concepts = conceptsNumber)

datax = json.dumps(result)

data = json.loads(datax)

Listing 3.5: get response from Clarifai API request with concepts (limit maximum number) and parse

as json

Listing 3.6 shows an example of a JSON output for the previously shown example picture

3.1 of the database flickr.csv. It takes a few seconds for each picture until the response

is received.

{ [...]

"outputs ": [

{ [...]

"data": {

"concepts ": [

{

"id": "ai_FWCjC8jZ",

"name": "architecture",

"value ": 0.9876021 ,

"app_id ": "main"

}, [...]

{

"id": "ai_m8rrtkhG",

"name": "town",

"value ": 0.9265938 ,

"app_id ": "main"

} [...]

}

Listing 3.6: example JSON output

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 39

The Python code 3.7 selects the concepts from the JSON response. The array answers

will store all information collected in the further process of analyzing the picture. In this

way, the ten predicted concepts which most likely represent the contents of the picture

are saved, sorted by probability. The probability values are not used further.

concepts = ’’

conceptsList = ’’

answers = []

for i in range (conceptsNumber -1):

concepts += data[’outputs ’][0][’data’][’concepts ’][i][’name’]+’\n’

conceptsList += data[’outputs ’][0][’data’][’concepts ’][i][’name’]+’, ’

concepts += data[’outputs ’][0][’data’][’concepts ’][conceptsNumber -1][’

name’]

conceptsList += data[’outputs ’][0][’data’][’concepts ’][conceptsNumber

-1][’name’]

answers.append(conceptsList)

Listing 3.7: select concepts from json response

The concepts returned by the API are architecture, building, winter, city, travel,

snow, outdoors, sight, old, town for the picture 3.1, architecture, column, travel,

monument, building, no person, neoclassical, city, marble, sculpture for the

picture 3.2 and no person, water, landscape, outdoors, tree, winter, grass, sky,

daylight, lake for the picture 3.3.

The Travel model of the Clarifai API returned only a very small number of often improper

concepts and is therefore not considered further.

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 40

3.1.3 Sentiment and Emotion

To analyze the concepts which have been returned for every image, an appropriate metric

needed to be used. The task was now to assign emotions to pictures. There are two main

approaches for rating the emotional content of text, namely sentiment analysis and

emotion analysis, which are briefly introduced in the following.

3.1.3.1 Sentiment Analysis

One approach is sentiment analysis, or opinion mining, which aims to determine the

attitude of someone regarding a certain topic or the overall contextual polarity or emo-

tional reaction towards textual content, a product, or something else. The attitude can

be a judgment, an evaluation, or an affective, i.e. emotional state. The technique is part

of ”Natural Language Processing” and often used in the context of recommender sys-

tems. On many social networks, online media services, or e-commerce websites, users can

provide reviews, survey responses, comments or feedback to items and products. These

user-generated texts provide a good source of user’s sentiment opinions about the items

and products. Applying sentiment analysis on this material can reveal both the related

features or aspects of the item, and the users’ sentiments on each of the features.

Sentiment analysis therefore aims to find out the positive or negative polarity, i.e. mean-

ingfulness of words. Many tools are listed under 27; a lot of approaches are based on lists

that assign a score between -1 and 1 to each word in terms of its polarity, objectivity, or

subjectivity. For instance, 28 features an opinion lexicon that inclused lists with around

2000 positive words and 4800 negative words.

Current research studies the sentiment of emojis, which became sort of the successors of

emoticons [Nova 15]. After labeling and analyzing 1.6 million tweets, an emoji sentiment

lexicon is provided, assigning polarity scores (positivity, negativity and neutrality) for each

emoji. The paper additionally finds out that most emojis express a positive sentiment. 29

shows the positive and negative sentiment score of many emojis. The creators of 30 tune

a neural network model to perform automatic visual sentiment analysis of images, i.e. to

rate whether their content is rather positive or negative, in their academic paper.

27https://medium.com/@datamonsters/sentiment-analysis-tools-overview-part-1-

positive-and-negative-words-databases-ae35431a470c
28https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
29https://www.npmjs.com/package/emoji-emotion
30https://github.com/imatge-upc/sentiment-2017-imavis

https://medium.com/@datamonsters/sentiment-analysis-tools-overview-part-1-positive-and-negative-words-databases-ae35431a470c
https://medium.com/@datamonsters/sentiment-analysis-tools-overview-part-1-positive-and-negative-words-databases-ae35431a470c
https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
https://www.npmjs.com/package/emoji-emotion
https://github.com/imatge-upc/sentiment-2017-imavis

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 41

3.1.3.2 Emotion Analysis

Several APIs analyze text inputs and return values of the basic emotions contained in

them as an output. The article 31 mentions many, and e.g. refers to Qemotion, PreCeive

and Indico. Sentic 32 and ParallelDots 33 are other examples. At 34, this was done using a

machine learning toolkit.

Another method is to use dictionaries. DepecheMood 35 contains 37.000 English words;

every word was automatically assigned a value for each of the eight emotional values afraid,

amused, angry, annoyed, dont care, happy, inspired and sad, adding up to 1 (100%). Some

words appear more than once, if they can be written in the same way, but as different word

types, e.g. the noun and verb ”train”. Under the webpage 36 many interesting dictionaries

are listed, such as the Affect Intensity Lexicon, containing information about words and

their associations with emotions, feelings, or attitudes.

Eventually, ”Whissell’s Dictionary of Affect in Language” 37 from [Whis 09] was selected,

as it is multi-dimensional and was created in an understandable, comprehensive and sci-

entifically documented way. It contains 8.742 English words; every word has a rating on

a scale from one (lowest score, corresponds to 0%) to three (highest score, corresponds

to 100%) for each of the three parameters pleasure, activity and imagery. The file

dictionary English.txt from the installed program was used as the emotion dictionary

dict.txt; the first lines of the file containing explanations about the dictionary were

removed, to enable a line-by-line searching through Python.

The Python code 3.8 looks into the dictionary and calculates the average of the values

for pleasure (p) and activity (a). The last parameter, imagery, is not used in this system.

As can be seen from the concepts before, the Clarifai API sometimes returns concepts

consisting of two words, e.g. ”no person” or ”transportation system”. In these cases,

only the first word is checked, i.e. ”no” or ”transportation”, because the dictionary only

contains single words in each line. The code checks for each concept if the word is present

in the dictionary, and adds its respective pleasure and activity values to p and a. In the

end, the average value is calculated by dividing the total score of p and a through the

number of hits (counter) and rounding it by four decimal digits. For none of the pictures

31https://medium.com/@sifium/top-five-emotional-sentiment-analysis-apis-116cd8d42055
32http://sentic.net/api/
33https://www.paralleldots.com/text-analysis-apis#emotion
34https://www.microsoft.com/developerblog/2015/11/29/emotion-detection-and-

recognition-from-text-using-deep-learning/
35https://github.com/marcoguerini/DepecheMood/releases
36http://saifmohammad.com/WebPages/lexicons.html
37https://www.god-helmet.com/wp/whissel-dictionary-of-affect/index.htm

https://medium.com/@sifium/top-five-emotional-sentiment-analysis-apis-116cd8d42055
http://sentic.net/api/
https://www.paralleldots.com/text-analysis-apis#emotion
https://www.microsoft.com/developerblog/2015/11/29/emotion-detection-and-recognition-from-text-using-deep-learning/
https://www.microsoft.com/developerblog/2015/11/29/emotion-detection-and-recognition-from-text-using-deep-learning/
https://github.com/marcoguerini/DepecheMood/releases
http://saifmohammad.com/WebPages/lexicons.html
https://www.god-helmet.com/wp/whissel-dictionary-of-affect/index.htm

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 42

word pleasure activity imagery
architecture 1.8333 1.8333 2.4
building 1.8571 1.8750 3.0
winter 2.3333 2.3750 3.0
city 2.1000 2.3000 2.6
travel 2.5714 3.0000 1.6
snow 2.3333 1.4000 3.0
outdoors not found not found not found
sight 2.2857 1.7500 1.8
old 1.5000 1.2000 2.4
town 2.1667 1.6000 2.8
∅ 2.109 1.9259 not used

Table 3.1: example contents of dict.txt

in the databases the pleasure or activity value is 0, meaning that there were always hits

for words. On average, about 70% to 80% of the concepts could be found in the dictionary,

making it an appropriate metric for the emotion tagging of photos.

counter = 0

p = 0.0000

a = 0.0000

for line in concepts.split(’\n’):

word = line.split(’ ’, 1)[0]

with open (’dict.txt’) as dict :

for line in dict :

hit = line.split(’ ’, 1)[0]

if word == hit:

counter += 1

p += float (line [40:46])

a += float (line [50:56])

p = 0 if counter == 0 else p/counter

a = 0 if counter == 0 else a/counter

answers.append(str (round (p,4)))

answers.append(str (round (a,4)))

Listing 3.8: look into dictionary and calculate average of the values for pleasure and activity

Table 3.1 shows the contents of the dictionary for the example picture 3.1 from

flickr.csv. The last line shows the average scores for pleasure (1.8333 + 1.8571 +

2.3333 + 2.1000 + 2.5714 + 2.3333 + 2.2857 + 1.5000 + 2.1667) / 9 = 2.109 and activ-

ity (1.8333 + 1.8750 + 2.3750 + 2.3000 + 3.0000 + 1.4000 + 1.7500 + 1.2000 + 1.6000)

/ 9 = 1.9259.

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 43

Figure 3.4: 28 emotions, taken from the paper
(from [Hasa 14])

Figure 3.5: 16 emotions, as assigned in
getEmotion()

The Python code 3.9 evaluates the values of pleasure and activity and assigns an

emotion to each picture, based on the paper [Hasa 14], which uses Russell’s Circumplex

model of affect to categorize emotions. This works in the following way: A total number

of 16 of the originally 28 emotions was selected for setting a unique emotion tag for each

picture. In this way, all images were categorized into, i.e. tagged with emotions.

def getEmotion(p,a):

if p>=1 and p<2 and a >=2.75 and a<=3:

return ’tense’

[...]

elif p>=2 and p<=3 and a>=1 and a <1.25:

return ’calm’

else :

return ’undefined ’

emotion = getEmotion(p,a)

answers.append(emotion)

return answers

Listing 3.9: evaluate and get emotion for values of p and a: assign one of 16 affect words as the picture’s

emotion tag

Figure 3.4 shows the original graphic with all 28 emotions, taken from the paper

[Hasa 14]. Figure 3.5 shows how the 16 remaining emotions were assigned by the method

getEmotion().

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 44

The Python code 3.10 calls the method photoToEmotion() specified in the previous

code parts for each picture, i.e. URL, and stores all information in the array final.

It converts the datetaken information into the same format as it has been output before

by BR’s EXIFextracter, when the CSV file containing the information about the pictures

from own.csv was generated. This leads to databases structured in an equal way. The

information about concepts, pleasure, activity and emotion (from final) is added to the

string csvLine and everything is saved as a CSV file, separated with commas. CSV is

a proper, suitable format, since its advantages compared to XML are that there is no

overhead, parsing is easily and quickly possible, and the created file can be read with any

text editor. To notify the user about the progress of the tagging process, a message is

shown for each successfully tagged picture.

piclib = open (’flickr.csv’, ’w’)

[...]

final = photoToEmotion(url_l)

datetaken = pic[i]. attrib[’datetaken ’]

date = datetaken [0:4]+ ’:’+datetaken [5:7]+ ’:’+datetaken [8:10]+ ’,’+

datetaken [11:19]

csvLine = url_l+’,’+date+’,’+pic[i]. attrib[’latitude ’]+’,’+pic[i].

attrib[’longitude ’]+’ ,\"’+final [0]+’\",’+final [1]+’,’+final [2]+’,’+

final [3]

if i == picNumber -1: piclib.write(csvLine)

else : piclib.write(csvLine+’\n’)

print (’Picture ’ + str ((i+1)) + ’ tagged!’)

print (’Finished! Data written to flickr.csv.’)

Listing 3.10: xml: add concepts, pleasure, activity and emotion, save as csv

The resulting file xmlParser.py can be used to create an own Flickr picture database at

the selected location with the arguments latitude and longitude.

The final CSV line of the example picture from flickr.csv now looks like this:

https://farm5.staticflickr.com/4752/26135474108_4bf45ef66f_b.jpg,

2018:01:25,11:27:21,60.167492,24.946827,"architecture, building, winter,

city, travel, snow, outdoors, sight, old, town",2.109,1.9259,contented

The final CSV line of the example picture from local.csv now looks like this:

24842660977_e86c0e0ba2_b.jpg,2017:12:29,15:04:57,48.146632,11.565728,

"architecture, column, travel, monument, building, no person,

neoclassical, city, marble, sculpture",2.0498,1.8814,contented

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 45

To tag the pictures of own-untagged.csv, a slight modification of the code 3.3 is needed.

The Python code 3.11 shows this: The picture database is parsed as a CSV, for every

picture the concepts, pleasure, activity and emotion attributes are added (from the array

final), and everything is saved as a CSV file. The user is notified about each successfully

tagged picture. The code 3.10 is not needed any more.

import csv

with open (’own -untagged.csv’, ’r’, newline=’’) as csvIn , open (’own.csv’,

’w’) as csvOut:

database = csv.reader(csvIn)

writer = csv.writer(csvOut , lineterminator=’\n’)

for count , row in en um er at e (database):

final = photoToEmotion(’img/’+row [0])

row.append(final [0])

row.append(final [1])

row.append(final [2])

row.append(final [3])

writer.writerow(row)

print (’Picture ’ + str ((count +1)) + ’ tagged!’)

print (’Finished! Data written to own.csv.’)

Listing 3.11: csv: add concepts, pleasure, activity and emotion, save as csv

The resulting file csvParser.py can be used for picture databases with pictures stored

locally. It does not need any arguments to be used. The method photoToEmotion() is

identical with the one used in xmlParser.py, except for the method called by Clarifai,

which is now predict by filename instead of predict by url.

The final CSV line of the example picture from own.csv now looks like this:

IMG_2359.JPG,2016:12:31,12:32:23,49.463844,10.565248,

"no person, water, landscape, outdoors, tree, winter,

grass, sky, daylight, lake",2.3582,1.7557,contented

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 46

3.1.4 Database Analysis

The solution of the code 3.9, where emotions were assigned to pictures, assumed that

there are 16 categories of emotions, with the borders between them being clearly defined.

To verify if this is an acceptable solution, the picture databases local.csv and own.csv

are analyzed in detail, showing the distribution of the values for pleasure and activity

for over 5.000 pictures in various ways.

The first four plots have been created with Microsoft Excel.

Figure 3.6 and Figure 3.7 visualize the pleasure and activity values of all pictures from the

databases local.csv resp. own.csv. Every dot represents one picture. It is quickly visible

that most of the values are in the inner part of the plot, thus showing that extremely high

or low values are almost not present at all.

To see the more interesting, inner part better, it is zoomed there, i.e. only showing values

in the range from 1.5 to 2.5.

In Figure 3.8 and Figure 3.9 it is clearly visible that for both databases, the right side

and the lower half contain more dots than the left side, resp. upper half.

Figure 3.6: Pleasure and activity values from
database local.csv

Figure 3.7: Pleasure and activity values from
database own.csv

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 47

Figure 3.8: Pleasure and activity values from
database local.csv (zoomed)

Figure 3.9: Pleasure and activity values from
database own.csv (zoomed)

To further investigate this, four two-dimensional histogram plots have been created with

Python, using the packages SciPy and Matplotlib 38, showing the density areas of dots,

i.e. pictures.

Figure 3.10 and Figure 3.11 show this tendency for both databases again.

Also at this step, further zooming to the inner part is done to better see the interesting

area.

The zoomed two-dimensional histograms Figure 3.12 and Figure 3.13 again visualize the

values which are most often present in the databases.

The four one-dimensional histograms, again created with Microsoft Excel, show the dis-

tribution of values from another perspective, individually for pleasure and activity.

Figure 3.14 and Figure 3.15 as well as Figure 3.16 and Figure 3.17 show again the result

that both databases have average pleasure scores slightly above the middle, and activity

scores slightly below the middle (the blue color highlights values below the middle, the

red color highlights values above the middle). The tendency to higher pleasure scores

can be explained with the fact that people tend to upload and take pictures which are

rather positive. Interestingly, both the distribution of pleasure and of activity values is

very similar to the results found in [Kim 17].

38https://matplotlib.org/api/pyplot_api.html

https://matplotlib.org/api/pyplot_api.html

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 48

Figure 3.10: 2D histogram from database
local.csv

Figure 3.11: 2D histogram from database
own.csv

Figure 3.12: 2D histogram from database
local.csv (zoomed)

Figure 3.13: 2D histogram from database
own.csv (zoomed)

Figure 3.14: Pleasure values from database
local.csv

Figure 3.15: Activity values from database
local.csv

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 49

Figure 3.16: Pleasure values from database
own.csv

Figure 3.17: Activity values from database
own.csv

Altogether, analyzing the emotion scores of the pictures in the databases has proven that

it is not possible to directly separate pictures into emotions with clearly defined borders,

in the way as it was described before by the code 3.9. A different solution needed to be

found.

3.1.5 Summary

A few steps had to be completed - from getting the pictures over the tagging process -

until the creation of the databases containing all information needed for the recommender

system could be finished completely. Figure 3.18 shows a graphical illustration of the

required steps that were taken; Python was utilized for the whole process.

Figure 3.18: Summary of the steps taken to generate the picture databases

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 50

3.2 Recommender System

Having collected all information about the pictures in the databases, the recommendations

could now be calculated. This required building an underlying recommender system

performing all necessary calculations. Before all steps that are done by the custom system,

which was created, are explained together with the respective code, a brief overview of

similar available systems is given.

3.2.1 Available Systems

Available mobile recommender systems similar to the use case needed here can be put

into different categories: There are existing GitHub projects in which apps for Android

devices have been created, such as FlickrMaps 39, which lets the user search for Flickr

photos and display them via Google Maps at the locations where they were taken, or

RoxAndroid 40, which is a recommender system for tourists that recommends routes of

Points of Interests, which can be navigated through via Foursquare check-ins, based on

the user’s and his friend’s likes.

Many libraries for recommender systems have been created as well: LibRec 41 is a Java

library that implements many recommendation algorithms, and especially resolves the

tasks of rating prediction and item ranking. RankSys 42 is another Java library, focus-

ing on the ranking task problem and implementing particularly collaborative filtering

recommendation algorithms.

The Python programming language offers a lot of advantages that are useful for building

recommender systems 43, such as its resource-saving and efficient data processing capabil-

ities. Therefore, many Python-based recommender systems exist: Surprise 44 is a tool

based on a SciKit, an add-on of the SciPy package, to build and analyze recommender

systems, including prediction algorithms, similarity measures, built-in datasets, and tools

to evaluate, analyse and compare the performance of algorithms. The demonstration of a

recommender system here 45 is based on the Pandas package.

39https://github.com/PR0Grammar/FlickrMaps-Android
40https://github.com/dan-zx/rox-android
41https://github.com/guoguibing/librec
42https://github.com/RankSys/RankSys
43https://www.datacamp.com/community/tutorials/recommender-systems-python
44https://github.com/NicolasHug/Surprise
45http://enhancedatascience.com/2017/04/22/building-recommender-scratch/

https://github.com/PR0Grammar/FlickrMaps-Android
https://github.com/dan-zx/rox-android
https://github.com/guoguibing/librec
https://github.com/RankSys/RankSys
https://www.datacamp.com/community/tutorials/recommender-systems-python
https://github.com/NicolasHug/Surprise
http://enhancedatascience.com/2017/04/22/building-recommender-scratch/

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 51

Tensorflow 46 is an open-source machine learning framework using data flow graphs, being

the base for some Tensorflow-based recommender systems written in Python: TensorRec
47 is a recommendation algorithm framework, allowing to develop own recommendation

algorithms, customize them using Tensorflow, and consuming three pieces of data, namely

user features, item features and interactions. TF-recomm 48 and Recommender 49 use a

factorization model in the context of collaborative filtering and the computing capabilities

of Tensorflow.

3.2.2 Custom System used here

The recommender system used here has been built from scratch in Python, as all parts of

the picture collection and analyzing process before have been as well. To begin, installing

the packages NumPy, SciPy and skicit-learn gives access to a huge base of algorithms

specifically designed for recommender systems.

An overview of techniques for recommender systems can be found at 50. Another compari-

son between different recommendation techniques, namely content-based filtering, item-to-

item and user-to-item collaborative filtering, can be found at 51. The type of recommender

system built here features collaborative filtering, as it considers the user behavior, i.e.

data, as well as the pictures, i.e. item data, for the recommendations. Furthermore, it is

memory-based, because the system memorizes and stores the data for the generation of

recommendations. Some sort of similarity measure - a distance algorithm, e.g. Euclidean

distance, cosine similarity or Pearson correlation 52, or classifier such as the k-nearest

neighbor algorithm - is needed for the system.

In the following, it is shown step by step how all the information necessary for the cal-

culation of the recommendations is read, how they are calculated, and how the relevant

resulting data is selected for further processing.

46https://www.tensorflow.org/
47https://github.com/jfkirk/tensorrec
48https://github.com/songgc/TF-recomm
49https://github.com/felipessalvatore/Recommender
50http://dataaspirant.com/2015/01/24/recommendation-engine-part-1/
51https://blogs.gartner.com/martin-kihn/how-to-build-a-recommender-system-in-python/
52http://dataaspirant.com/2015/04/11/five-most-popular-similarity-measures-

implementation-in-python/

https://www.tensorflow.org/
https://github.com/jfkirk/tensorrec
https://github.com/songgc/TF-recomm
https://github.com/felipessalvatore/Recommender
http://dataaspirant.com/2015/01/24/recommendation-engine-part-1/
https://blogs.gartner.com/martin-kihn/how-to-build-a-recommender-system-in-python/
http://dataaspirant.com/2015/04/11/five-most-popular-similarity-measures-implementation-in-python/
http://dataaspirant.com/2015/04/11/five-most-popular-similarity-measures-implementation-in-python/

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 52

3.2.2.1 Saving the Parameters

The Python code 3.12 saves the provided parameters used for the recommendation calcula-

tions. gpsPos holds the location (latitude and longitude), paVal contains the emotion

values (pleasure and activity) for which recommendations are to be calculated. For-

mally, a dataset containing various information is used to apply appropriate algorithms

on; each item of the dataset consists of one record with certain features. One dataset’s

record here equals a picture, its features are latitude, longitude, pleasure and ac-

tivity. Summarized can be stated that both as user data / categories and as item data /

categories serve these same four parameters.

The picture database for which recommendations are performed is specified (in db), as

well as whether the recommendations should consider the emotions, i.e. the pleasure and

activity values, or not (rand), thus in the latter case recommending randomly - this is just

for demonstration purposes and will be explained below in more detail. Two NumPy arrays

for the GPS and the pleasure and activity data, gpsA and paA, are created, each taking

the parameters fileNumber (total number of pictures in the database) and closeNumber

(number of pictures that are considered for the final calculation step) for their dimensions

into account. The filling of these arrays will be demonstrated in the next steps.

import sys

import numpy as np

gpsPos = [[sys.argv[1],sys.argv [2]]]

paVal = [[sys.argv[3],sys.argv [4]]]

db = sys.argv [5]

rand = sys.argv [6]

fileNumber = sum (1 for line in open (db))

closeNumber = 50

gpsA = np.zeros(shape=(fileNumber ,2))

paA = np.zeros(shape=(closeNumber ,2))

Listing 3.12: save all parameters, create arrays

3.2.2.2 Finding the Closest Places

The Python code 3.13 fills the array gpsA with all the GPS position data of the database. It

then performs a k-nearest neighbor search for this data by (1) fitting the nearest neighbor

object to the dataset and thus checking the GPS data, (2) finding the k-neighbors of each

point in the dataset by calling kneighbors() (this step is optional) and (3) finding the

k-neighbors of the selected position gpsPos, returning only the indices, and selecting the

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 53

50 closest elements, i.e. pictures. closeResults now holds the respective picture indices,

sorted after closeness to the selected position. The core idea is based on the article 53.

import csv

from sklearn.neighbors import NearestNeighbors

with open (db, ’r’, newline=’’) as csvIn:

database = csv.reader(csvIn)

for counterGPS , row in en um er at e (database):

gpsA[counterGPS] = row[3], row [4]

gpsNeighbors = NearestNeighbors(n_neighbors=closeNumber , algorithm=’

ball_tree ’).fit(gpsA) # (1)

gpsDistances , gpsIndices = gpsNeighbors.kneighbors(gpsA) # (2)

closeResults = gpsNeighbors.kneighbors(gpsPos , return_distance=False) #

(3)

Listing 3.13: fill gps data array, calculate 50 closest recommendations

To demonstrate the behavior, an example for calculating recommendations is shown step

by step for the following parameters (the location is the Marienplatz in Munich): latitude:

48.137079, longitude: 11.576006, pleasure: 2, activity: 2, database: local.csv,

random: false.

Output of print(gpsA):

[[48.174342 11.553561]

[48.143267 11.582808]

[48.161877 11.596605]

...,

[48.106191 11.553313]

[48.177255 11.555119]

[48.131324 11.548004]]

Output of print(closeResults):

[[227 516 345 106 461 447 122 365 376 128 325 281 422 543 123 525 615 487

589 629 584 479 512 102 308 542 153 573 617 130 238 163 561 465 448 628

321 580 411 159 627 616 33 466 300 261 566 103 84 368]]

53http://www.data-mania.com/blog/recommendation-system-python/

http://www.data-mania.com/blog/recommendation-system-python/

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 54

3.2.2.3 Calculating the Recommendations

The Python code 3.14 fills the array paA with all the pleasure and activity data only

of the 50 pictures which are closest to the selected location, which have been stored in

closeResults before (0). It also stores all information about these pictures in the array

info, sorted in order of appearance in the database, separated with comma. It then

performs a k-nearest neighbor search for this data by (1) fitting the nearest neighbor

object to the dataset and thus checking the pleasure and activity data, (2) finding the

k-neighbors of each point in the dataset by calling kneighbors() (this step is optional)

and (3) finding the k-neighbors of the selected pleasure and activity values paVal, i.e.

emotion, returning only the indices, and selecting the three best elements, i.e. pictures.

topThree now holds the respective picture indices, sorted after closeness to the selected

emotion.

info = []

with open (db, ’r’, newline=’’) as csvIn:

database = csv.reader(csvIn)

gpsRows = [row for elem , row in en um er at e (database) if elem in (

closeResults [0])] # (0)

for counterPA , row in en um er at e (gpsRows):

paA[counterPA] = row[6], row[7]

info.append(’,’.join(row))

paNeighbors = NearestNeighbors(n_neighbors =3, algorithm=’ball_tree ’).fit

(paA) # (1)

paDistances , paIndices = paNeighbors.kneighbors(paA) # (2)

topThree = paNeighbors.kneighbors(paVal , return_distance=False) # (3)

Listing 3.14: fill pleasure and activity data array, calculate 3 best recommendations

The above mentioned example is continued. Output of print(paA):

[[1.9714 1.8634]

[2.1853 1.9823]

[1.9762 1.751]

...,

[2.135 1.9134]

[2.146 2.0004]

[1.9294 1.9395]]

Output of print(topThree):

[[3 46 8]]

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 55

3.2.2.4 Selecting the Data for Further Processing

The Python code 3.15 converts the recommendation data for a proper representation and

further processing; closeIndices in the end holds the indices of the 50 closest pictures;

with their help, all the information about these pictures, i.e. source, date and time taken,

etc., can be restored from the original database file. If real recommendations are selected,

topInfo holds the information about the three best pictures, i.e. fitting most to the

selected emotion, or, if random recommendations are selected, about three distinct random

pictures of the 50 closest.

from random import sample

closeIndices = str (closeResults.tolist ()).replace(’,’,’’)

randints = sample(range (50) ,3)

topInfo = str (info[topThree [0][0]])+’\n’+ str (info[topThree [0][1]])+’\n’+

str (info[topThree [0][2]]) if rand == ’false’ else str (info[randints

[0]]+ ’\n’+info[randints [1]]+ ’\n’+info[randints [2]])

print (closeIndices [2: len (closeIndices) -2]+’...’+topInfo)

Listing 3.15: convert recommendation data for proper representation

Final output of print(topInfo) for the example:

39608589202_cd546da37e_b.jpg,2018:01:09,16:02:28,48.137582,11.575459,

architecture, no person, church, travel, cathedral, city, tower,

building, goth like, outdoors,1.9909,1.9657,miserable

39205177094_54e7e114dc_b.jpg,2018:01:26,17:53:19,48.137275,11.575436,

architecture, no person, church, building, travel, religion, cathedral,

city, Gothic, outdoors,2.0325,2.0514,happy

25044228537_616a5cd8d8_b.jpg,2018:01:26,22:04:01,48.136505,11.575755,

city, architecture, roof, no person, travel, church, cityscape, town,

building, skyline,2.066,1.9726,contented

The resulting file RecSys.py can be used for calculating recommendations at the selected

location for the chosen emotion with the arguments latitude, longitude, pleasure,

activity, picture database, and rand (recommendations either real or random).

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 56

3.2.3 Summary

As a summary, it can be stated that all calculations are performed through Python,

directly and locally on the computer. The focus of the recommendations is on the influence

of the factors location, defined by latitude and longitude coordinates, and emotion,

defined by pleasure and activity values. The two calculations steps each first consider

all pictures, take the location into account, select the 50 closest, then take the emotion

into account, considering only these 50 pictures, and eventually result in the three best

pictures. The calculations are performed with the k-nearest neighbor search, using the ball

tree algorithm 54. This technique belongs to the field of machine learning, in particular to

the category of unsupervised learning. The concrete algorithm configuration was selected

due to its simplicity and fast calculation 55; besides that, many other recommender systems

also use the k-nearest neighbor algorithm. Other algorithms and metrics, e.g. clustering

techniques such as DBSCAN or k-means 56, were not useful for this use case, since it

was not possible to put the data into (reasonable) clusters, as tests with the DBSCAN

algorithm showed.

3.3 Presentation: User Interface

An appropriate way of displaying the calculated data needed to be found, to serve as the

main point for the user to access the recommendations. One open question was which

architecture should be selected. It was decided to choose an architecture with a client,

where the user can input and manage all his specified data, and a server, where the

calculation of recommendations takes place. For the client, a graphical user interface

(GUI) was needed which shows an interactive map and which can process the picture

databases to show the pictures on the map. In addition, the GUI had to feature options

where the user can select his current emotion, i.e. the mood he wants to receive recom-

mendations for, and where the recommendation results are presented. All used techniques

and possible alternatives are explained and added step by step in the following.

There are some existing solutions for such applications, similar to the area of geographic

information systems and using Python. Geotiler 57, for instance, is a Python library that

allows to create maps using tiles from a map provider, e.g. OpenStreetMap, which then

54http://scikit-learn.org/stable/modules/neighbors.html
55http://jakevdp.github.io/blog/2013/04/29/benchmarking-nearest-neighbor-searches-

in-python/
56http://scikit-learn.org/stable/modules/clustering.html
57https://wrobell.dcmod.org/geotiler/index.html

http://scikit-learn.org/stable/modules/neighbors.html
http://jakevdp.github.io/blog/2013/04/29/benchmarking-nearest-neighbor-searches-in-python/
http://jakevdp.github.io/blog/2013/04/29/benchmarking-nearest-neighbor-searches-in-python/
http://scikit-learn.org/stable/modules/clustering.html
https://wrobell.dcmod.org/geotiler/index.html

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 57

can be used by interactive applications or to create data analysis graphs. It is based on the

Python port of Modest Maps 58, a display and interaction library for tile-based maps writ-

ten in JavaScript. osmapi 59 and Smopy 60 are Python wrappers for the OpenStreetMap

API, the latter of which suggests using the Folium project, which is briefly introduced

below.

3.3.1 Folium

As a first approach for graphically showing the calculated information, Folium 61 has been

used. The project tries to combine the data manipulation advantages of Python and the

visualization of Leaflet 62, a JavaScript-based library to build interactive maps, making

it possible to visualize data that has been manipulated in Python. It offers a variety of

functions 63, documented modules 64 which add features, and plugins 65. A tutorial can

be found at 66.

The Python code 3.16 shows a minimum working example, creating a blue marker for

every picture in the database local.csv, putting a red marker to the Marienplatz in

Munich, and saving everything as a HTML file which can be opened in a browser.

import folium

import csv

m = folium.Map(location =[48.137079 , 11.576006])

with open (’local.csv’, ’r’, newline=’’) as csvIn:

database = csv.reader(csvIn)

for row in database:

folium.Marker(location =[float (row [3]), float (row [4])]).add_to(m)

folium.Marker(location =[48.137079 , 11.576006] , icon=folium.Icon(color=’

red’, icon=’cloud’)).add_to(m)

m.save(’index -py.html’)

Listing 3.16: Folium example

58https://github.com/stamen/modestmaps-js
59https://github.com/metaodi/osmapi
60https://github.com/rossant/smopy
61https://github.com/python-visualization/folium
62http://leafletjs.com/
63http://python-visualization.github.io/folium/docs-v0.5.0/quickstart.html
64http://python-visualization.github.io/folium/docs-v0.5.0/modules.html
65http://python-visualization.github.io/folium/docs-v0.5.0/plugins.html
66https://georgetsilva.github.io/posts/mapping-points-with-folium/

https://github.com/stamen/modestmaps-js
https://github.com/metaodi/osmapi
https://github.com/rossant/smopy
https://github.com/python-visualization/folium
http://leafletjs.com/
http://python-visualization.github.io/folium/docs-v0.5.0/quickstart.html
http://python-visualization.github.io/folium/docs-v0.5.0/modules.html
http://python-visualization.github.io/folium/docs-v0.5.0/plugins.html
https://georgetsilva.github.io/posts/mapping-points-with-folium/

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 58

Figure 3.19: Folium markers on map (Munich area)

Figure 3.19 shows how the generated HTML file with the markers looks like.

However, the solution of Folium holds some limitations, as it does not give access to the

full functionality of the underlying Leaflet framework: Since there was no direct access to

the HTML code of the pop-ups, marker pop-ups could not be linked with the pictures that

belong to each of the markers, so that these pictures would be visible when the pop-ups

are clicked. Additionally, it was not possible to customize the output HTML in any way.

3.3.2 Leaflet

LeafletJS 67, as already mentioned before, is a library based on JavaScript that can be

used to display interactive maps 68. The reference can be found at 69. Leaflet, in addition,

allows to use map tiles from many different sources 70 and can be extended as desired.

The HTML code 3.17 shows a minimum working example, using the cascading style sheet

(CSS) and JavaScript (JS) files from Leaflet, creating a Leaflet map by adding it as a

<div> element, and in the <script> part centering the map to the coordinates of the

67https://maptimeboston.github.io/leaflet-intro/
68http://leafletjs.com/examples/quick-start/
69http://leafletjs.com/reference-1.3.0.html
70http://leaflet-extras.github.io/leaflet-providers/preview/index.html

https://maptimeboston.github.io/leaflet-intro/
http://leafletjs.com/examples/quick-start/
http://leafletjs.com/reference-1.3.0.html
http://leaflet-extras.github.io/leaflet-providers/preview/index.html

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 59

specified starting position (here again the Marienplatz), adding osmLayer, a tile layer

drawing a map from OpenStreetMap, and a marker that can be moved.

<! DOCTYPE html >

< head >

< meta http -equiv="content -type" content ="text/html; charset=UTF -8" />

< title >Leaflet </ title >

< link rel ="stylesheet" href ="https :// unpkg.com/leaflet@1 .3.1/ dist/

leaflet.css" />

< script src ="https :// unpkg.com/leaflet@1 .3.1/ dist/leaflet.js"></

script >

< style >html , body {width: 100%; height: 100%; margin: 0; padding: 0;}

</ style >

< style >#map {position: relative; width: 100.0%; height: 100.0%; left:

0.0%; top: 0.0%;} </ style >

</ head >

< body >

< div id ="map"></ div >

</ body >

< script >

var position = [48.137079 , 11.576006];

var map = L.map("map", {center: position , zoom: 4});

var osmLayer = L.tileLayer("https ://{s}.tile.openstreetmap.org/{z}/{x}/{

y}.png", {attribution: null , maxZoom: 18}).addTo(map);

var marker = L.marker(position , {draggable: true}).addTo(map);

</ script >

Listing 3.17: Leaflet example

The resulting HTML file, which is stored as index.html, looks like the Folium example,

without the additional markers for the pictures of the database. This HTML file will now

be continuously expanded. It uses a few different CSS and JS files.

3.3.3 Leaflet Sidebar

One aim was to display all relevant information and content within one single HTML

page, so that the user never has to switch between different HTML sites. To do so, a

few possible approaches were considered, such as a CSS sidebar 71 allowing to switch

between content via provided links, or possible fullscreen overlays 72. In addition, various

plugins have been built to make use of LeafletJS and extend its functionality. The Leaflet

71https://www.w3schools.com/w3css/w3css_sidebar.asp
72https://www.w3schools.com/howto/howto_js_fullscreen_overlay.asp

https://www.w3schools.com/w3css/w3css_sidebar.asp
https://www.w3schools.com/howto/howto_js_fullscreen_overlay.asp

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 60

sidebar plugin ”sidebar-v2” 73 has been eventually used due to its seamless integration

into LeafletJS and good customization features. The sidebar is not used via a remote

CDN, but locally instead, because four values had to be changed in the CSS file (version

0.4.0: lines 23, 114, 176, 196) to adjust the sidebar to a 50 pixels higher width, resulting

in a total width of 500 pixels to have more space for content display.

Figure 3.20: Leaflet sidebar

Therefore the Leaflet sidebar, consisting of

CSS and JS, is integrated with altogether

three tabs in the <body> part. The sidebar

is drawn and added to the map in the

JavaScript code. Its icons are drawn by

the FontAwesome CSS. Each of the tabs

has its own content pane: The first tab �

gives a brief explanation about how to use

the system. The second tab ¿ will repre-

sent the recommender system. The third

tab � will show the recommendations, i.e.

pictures, with all its affiliated information.

Figure 3.20 shows the sidebar and the content of the first tab. The detailed contents and

functionalities of the tabs are explained in the following.

3.3.4 Flask

A critical point was to get the Python-based backend and the HTML- and JavaScript-

based frontend to communicate with and call methods from each other. There are several

approaches to solve this problem: The Python module for Common Gateway Interface

(CGI) support 74 can be used to run Python scripts in a web environment. Another

project uses the Tornado server to create a bridge between a Python server and a browser

with JavaScript on the client side 75. For Node.JS, which is a run-time environment for

executing JavaScript code server-side, exists an available plugin called ”Python Shell” 76.

A local Python server can be started using purely built-in methods with python -m

http.server 77. However, browsers are, without modification, not able to access local

files - which is needed for the picture databases though - directly from an Ajax request

73https://github.com/Turbo87/sidebar-v2
74https://docs.python.org/3/library/cgi.html
75https://github.com/patrickfuller/python-js-bridge
76https://github.com/extrabacon/python-shell
77https://docs.python.org/3/library/http.server.html

https://github.com/Turbo87/sidebar-v2
https://docs.python.org/3/library/cgi.html
https://github.com/patrickfuller/python-js-bridge
https://github.com/extrabacon/python-shell
https://docs.python.org/3/library/http.server.html

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 61

(which can handle the communication between JavaScript and Python). This behavior

is due to security reasons, the so-called same-origin security policy. To fix this for in-

stance in Google Chrome, the browser either has to be invoked with the command line

flag --disable-web-security, or an extension from the Chrome Web Store 78 needs

to be installed, to avoid the error ”Cross origin requests are only supported for (cer-

tain) protocol schemes” preventing local file access. Alternatively, sending the header

’Access-Control-Allow-Origin’ to the Python server via a script fixes this, too, and

eventually allows Cross-Origin Resource Sharing for all protocol schemes.

Eventually, to build all methods together in one place, the server framework Flask 79,

which is based on Python 80, and the corresponding Python package flask cors were

used. Its advantage is that it bundles all required functionality in one solution.

The Python code 3.18 starts the Flask server and allows Cross-Origin Resource Sharing.

If a function is called via Ajax in JavaScript, Flask routes the request to the specified

Python method, as e.g. under getFile, where the corresponding methods generates an

URL internally used by Flask. All local files need to be located in a folder called static.

To start the server locally on localhost on port 5000, the code (saved as app.py) simply

needs to be run.

from flask import Flask , request , redirect , url_for

from flask_cors import CORS

app = Flask(__name__)

app.config[’SEND_FILE_MAX_AGE_DEFAULT ’] = 0 # cached files expire

immediately (only when modified through server)

CORS(app)

@app.route(’/getFile/’)

def func():

return redirect(url_for(’static ’, filename=request.args.get(’file’)))

if __name__ == ’__main__ ’:

app.run()

Listing 3.18: Flask (excerpt)

The JavaScript frontend can now call methods of the backend via Ajax. The backend

routes these calls to execute the respective methods.

78https://chrome.google.com/webstore/detail/allow-control-allow-origi/

nlfbmbojpeacfghkpbjhddihlkkiljbi
79http://flask.pocoo.org/
80https://www.makeuseof.com/tag/python-javascript-communicate-json

https://chrome.google.com/webstore/detail/allow-control-allow-origi/nlfbmbojpeacfghkpbjhddihlkkiljbi
https://chrome.google.com/webstore/detail/allow-control-allow-origi/nlfbmbojpeacfghkpbjhddihlkkiljbi
http://flask.pocoo.org/
https://www.makeuseof.com/tag/python-javascript-communicate-json

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 62

Figure 3.21: Markers of database flickr.csv (Helsinki area)

3.3.5 Displaying the Images

The frontend JavaScript function drawMarkers() shows round red circles of the Leaflet

type circleMarker (the type marker used in the Folium example was replaced, due to

performance problems when a high number of these complex shaped markers has to be

drawn on the map) for each picture from the database; if the marker is clicked, the picture

taken at there (at the marker position) is shown in a pop-up. The picture can be stored

either locally in a folder called img, as in the databases local.csv and own.csv, or

under a web link, as in flickr.csv. The jQuery JavaScript library gets the database file

contents via Ajax and parses them in the variable lines. Each line of the file, i.e. picture,

is represented by a circleMarker object (this step could have also been done with 81).

drawMarkers("local.csv") is executed as default.

The Figures 3.21, 3.22 and 3.23 show for each database how the Leaflet map looks like

when the picture markers are drawn.

81https://github.com/evanplaice/jquery-csv

https://github.com/evanplaice/jquery-csv

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 63

Figure 3.22: Markers of database local.csv (Munich area)

Figure 3.23: Markers of database own.csv

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 64

3.3.6 Choosing the User’s Emotion

The second tab ¿ contains all input and information needed for the recommender system.

It displays the current position of the marker as GPS coordinates at the top; when the

marker is dragged, the position is updated, rounded and shown. This is realized in the

frontend function marker.on("dragend", function()).

A very important part of the whole system was how to find out or select what the current

emotion or mood of the user is, i.e. to build a link between the user’s and the pictures’

emotions. It was decided to use explicit collection of emotion data. Consequently, the

system needs the user’s answer to the question ”What is your current mood?”, demanding

him to explicitly clarify his emotion at the moment. Therefore, the focus is on the evalu-

ation of emotions, and not on how to get them implicitly or inferred. The recommender

system acts for the user as a blackbox, meaning that he does not need to know how the

calculations are actually done, but only needs to specify his emotion.

It was now essential to find some way for the user to input the emotion. A requirement

was that a similar model of the one with pleasure and activity values from the emotion

tagging of pictures had to be applied again. As a first try, two draggable sliders were

used, one for pleasure and one for activity, each ranging from 1 to 3. Their values were

newly drawn when they were dragged, and updated when they were clicked. However,

this procedure was not really intuitive, since adjusting values on a scale from 1 to 3

can not automatically be connected with an emotional state, and their two-dimensional

connection was not emphasized in this way. Other tries with two-dimensional plots were

not successful either.

As the database analysis had shown before, the current evaluation of the pictures’ emo-

tions based on the 16 selected emotions from [Hasa 14] was not reasonable and conse-

quently ignored in the further process. However, the idea of using an illustration of the

emotions in a two-dimensional graphic was still a helpful approach. Therefore, the next

try was to use a clickable graphic.

Instead of using an overloaded graphic with 28 emotions, only nine remaining emojis were

selected: happy, excited, angry, frustrated, sad, bored, relaxed, satisfied and

neutral. This is shown in Figure 3.24. The user’s decision is furthermore simplified and

supported by displaying an emoji next to the verbal name of each emotion. The emojis

used in the graphic were taken from Emojipedia 82. The resulting graphic, as shown

in Figure 3.25, lets the user intuitively choose his emotion by clicking anywhere; this

82https://emojipedia.org/apple/

https://emojipedia.org/apple/

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 65

Figure 3.24: Emotions reduced to nine most
important ones (from [Hasa 14])

Figure 3.25: Emotion graphic with added
emojis

is possible because the graphic is drawn onto a HTML5 canvas 83. A canvas has many

advantages: The exact mouse coordinates can be saved, the canvas can be manipulated

by clicking, and therefore the own emotion can be adjusted exactly, meaning that the user

does not have to select one specific emoji.

It was necessary to decide which positions should be used for the emotions in the graphic.

To verify and proof the selection and the arrangement of the emotions taken before,

a systematic step-by-step approach was performed: The machine learning technique of

k-means clustering 84 was applied on the databases local.csv and own.csv for k=9

and visualized in two-dimensional plots, again using the Python packages SciPy and

Matplotlib. This is shown in Figure 3.26 and Figure 3.27; the respective cluster centroids

are marked as red dots. The plots show that the selection and arrangement are reasonable.

The second Leaflet tab also shows statistics about the mouse coordinates, i.e. its position

within the canvas, and pV and aV. These are the values for pleasure and activity, as they

would be saved if the mouse would be clicked, and are therefore always updated when the

mouse is moved within the canvas. They are in reality saved as values between 1 and 3,

corresponding to the values from the emotion dictionary, but for displaying mathemat-

ically converted to values in % to be more intuitive for the user. This functionality is

realized in function showStats().

83https://www.w3schools.com/html/html5_canvas.asp
84https://docs.scipy.org/doc/scipy/reference/cluster.vq.html

https://www.w3schools.com/html/html5_canvas.asp
https://docs.scipy.org/doc/scipy/reference/cluster.vq.html

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 66

Figure 3.26: K-means algorithm for database
local.csv with marked centroids

Figure 3.27: K-means algorithm for database
own.csv with marked centroids

Figure 3.28: Choosing the user’s emotion

pleasure and activity, with the default val-

ues 2 and 2 (50% and 50%), are the values

which are actually saved for the emotion se-

lected by the user, and are therefore always up-

dated when the mouse is clicked in the canvas,

as well as converted to %. In addition, a black

dot is drawn on the canvas, on the spot where

the user clicked with his mouse. This function-

ality is realized in function savePAandDraw().

Figure 3.28 shows the representation of all de-

scribed elements.

3.3.7 Creating an Own Database

The system furthermore supports the ability to

create an own picture database by clicking a link (”create your own by clicking here”).

The frontend function flickr() 3.19 performs an Ajax call to the Python backend in

app.py to create an own Flickr picture database at the marker location. The called

method there, xmlParser(), offers basically the same functionality as the file xml-

Parser.py. There are only a few small edits: import.sys and sys.argv[] are not

needed any more, but replaced with request.args.get[] instead, because the argu-

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 67

ments are delivered directly from the user via the provided URL. The calls to sys.exit()

resp. print() are replaced by return statements. The file location of dict.txt is now

static/dict.txt, the output database is saved under static/flickr-own.csv. When

the process is complete, the browser sends an alert.

function flickr () {

$.ajax({

type: "GET",

url: "http :// localhost :5000/ xml?lat="+position.lat.toString ()+"&lng=

"+position.lng.toString (),

success: function(response) {alert(response);},

error: function(response) {console.error(response);}

});

}

Listing 3.19: function flickr() in HTML

3.3.8 Getting and Displaying the Recommendations

Now the database can be switched by clicking on the respective buttons (function

drawMarkers()), and the calculation of recommendations happens by clicking on one

of the two buttons.

The frontend function recommend(rand) performs an Ajax call to the Python backend in

app.py to calculate the recommendations at the marker location for the chosen emotion

(pleasure and activity values) and picture database, real or random. The called method

there, RecSys(), offers basically the same functionality as the file RecSys.py. There are

only a few small edits: As above, import.sys and sys.argv[] are not needed any more,

but replaced with request.args.get[] instead. The call to print() is replaced by a

return statement.

The method response is parsed, splitting the results that contain the information about

the close and recommended pictures at the separating ”. . . ”. The first part contains

the indices of the 50 pictures that are closest to the position: They are drawn as yellow

circle marker objects on the map. The indices are enough, because the database file is

already parsed in the JavaScript variable lines. The second part contains the infos

about the three pictures which are recommended. The information is stored in five arrays

that are gradually filled, the pictures are drawn on the map as blue circle marker objects,

connected with a line together with the draggable marker (which represents the user’s

position). The line can also be drawn using the Leaflet Routing Machine with its CSS

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 68

Figure 3.29: First tab Figure 3.30: Second tab Figure 3.31: Third tab

and JS files, showing a detailed navigation between all places. The map eventually flies

to the position of the marker and changes to a high zoom level. The recommendations,

i.e. pictures, are shown together with all their information at the third tab �.

The system has now been finally built with all its components. The screenshots demon-

strate its functionality.

Figures 3.29, 3.30 and 3.31 show all three sidebar screens, with the same values as demon-

strated in the previous section about the recommender system. Figure 3.32 shows the three

calculated recommendations, and how they are displayed on the map.

Listing 3.20 shows a brief summary of the file structure (used variables, methods, etc.) of

index.html.

<! DOCTYPE html >

< head > // contains links to used CSS and JS , style definitions </ head >

< body > // sidebar tabs and content , Leaflet map </ body >

< script >

// variables for position , map , sidebar , layers , draggable marker

marker.on("dragend", function(e)) {}

// variables for file (picture database), prefix (picture location),

lines (file content), picMarkerGroup (group of picture markers),

recMarkerGroup (group of recommendation markers)

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 69

Figure 3.32: Recommendations on the map (Munich example)

function drawMarkers(selectedFile) {}

drawMarkers("local.csv");

// variables for shown and saved pleasure and activity values

function showStats(e) {}

function savePAandDraw(e) {}

function flickr () {}

function recommend(rand) {}

</ script >

Listing 3.20: file structure of index.html

3.3.9 Summary

The system’s � tab shows general information about the recommender system and its

usage. The map visualizes the position specified by the user with a marker, and all geo-

tagged photos from the selected database (two modes are supported, local.csv and

flickr.csv) in red. After the user has chosen his emotion on the ¿ tab, the closest 50

photos are marked in blue and the top three in yellow, i.e. showing the photos matching

the selected emotion best. The � tab shows three recommendations together with all its

information, a route between them is drawn on the map. Since the recommendations are

CHAPTER 3. DESIGN OF AN EMOTION-BASED RECOMMENDER SYSTEM 70

performed via the Python server, the system runs entirely without an internet connection,

except for the loading and caching of the map tiles from OpenStreetMap; otherwise, no

network connection is needed. The used technologies for client and server are illustrated

in Figure 3.33.

Figure 3.33: Summary of the technologies used for client and server

Figure 3.34 analyzes the communication between user and server for the two use cases of

creating an own picture database is created, and of calculating the recommendations. It

lists the information that is transferred when the user sends requests to the server via

the frontend functions, and the responses that are sent to the client when the server

has finished the execution of the backend methods.

Figure 3.34: UML communication diagram showing requests and responses between user and server

Chapter 4

Evaluation

To scientifically ensure that the additional emotional component helps to improve the

place recommendations, a user study was designed and carried out. The aim of this eval-

uation of the system was to show that, if the emotion is used in addition to the location

as a parameter for the recommendation system, an improvement is made, compared to

a system where only the location is considered. It was therefore aimed to demonstrate

that it is useful from the user point of view to include the results of the images’ emotion

tagging process in the suggestions.

4.1 User Study Design

The two possible recommendation variants, recommending nearby places considering the

emotion vs. recommending nearby places randomly, were used in the study. This is called

A/B testing: This form of a statistical hypothesis test with two variants, A and B, is a

controlled experiment often used in web analytics to compare two versions of a single vari-

able by testing participants’ responses to variable A against variable B, and determining

which of the two variables is more effective, e.g. which variant leads to higher conversion

rates. To compare the recommendations unbiased, it was essential that the participants

were not told which of the variants they were seeing. Besides the recommendation vari-

ant, all other elements and parameters of the system, such as used picture database and

number of shown recommendations, had to stay the same.

To perform this test, a new HTML file index-study.html was created and edited in

a few ways in comparison to index.html. All distracting displayed objects, which were

not needed for the execution of the study, were hidden with style="display:none": the

71

CHAPTER 4. EVALUATION 72

current position, the statistics (mouse coordinates, values for pleasure and activity), the

radio buttons to choose the picture database, and the buttons to create an own picture

database or to select whether to calculate recommendations real or randomly. For the

two variants, the rand argument of the recommend() method was used. A second � tab

was added to the sidebar; one of these tabs contained the real recommendations, one the

random, without revealing this arrangement to the participants. Additionally, on the �

tabs, no information about the pictures, such as date and time taken, was shown, but

only the pictures themselves. As a last tab, ú was added, where the questions for the

study were asked.

4.2 Conducting the Study

The study was carried out in the Munich area amongst a total of 28 participants. It was

performed locally and not remotely over the web, because it was easier in this way to

directly interact with the participants, handle possible questions about the system and

immediately answer them.

Only the database local.csv containing pictures from Munich was used for the study,

and all texts in the explanations and the emotions graphic were furthermore translated to

German. The participants were guided step by step at using the system via the instructions

on the screen, especially asked to take a close look at the pictures while also considering

the map showing the markers.

The questions which were to answer on the last ú tab were, besides gender and age

(grouped in ranges of ten years, thus adding up to a total of five answer options), the

participants’ rating for both sets of recommendations (real and random), on a scale from

one to five stars. The corresponding question was formulated like this: ”How suitable - in

terms of your chosen emotion - did you find the three recommendations? How do you rate

quality and accuracy of the recommendations?” This was therefore testing the quality

and usefulness of the system. The participants could also give additional comments and

suggestions for improvements.

CHAPTER 4. EVALUATION 73

4.3 Results

The following diagrams show the results of the questions which were asked.

Figure 4.1: Gender distribution Figure 4.2: Age distribution

Figure 4.3: Ratings by the participants for real
recommendations

Figure 4.4: Ratings by the participants for
random recommendations

Figure 4.1 shows the gender distribution of the participants, Figure 4.2 shows the age

distribution. To get a broad spectrum of opinions from a wide demographic range, it was

tried to consult participants with different genders, ages and also interests.

Figure 4.3 and Figure 4.4 show the ratings of the participants for the emotion-based and

for the random recommendations, respectively. The average of the ”real” ratings is 3.71,

the average of the random ratings is 3.14, thus showing an increase of more than half a

star for the recommendations that consider the emotions.

CHAPTER 4. EVALUATION 74

Figure 4.5: Emotion graphic translated to
German

Figure 4.6: Emotions selected by the partici-
pants

Figure 4.5 shows the emotion graphic in German. Figure 4.6 reveals from which areas the

participants selected emotions. The most popular choices were satisfied (10x) and happy

(7x). 10 choices featured a rather active emotion (upper half), 15 choices featured a rather

passive emotion (lower half). 22 choices were rather positive (right half), 3 choices were

rather negative (left half).

4.4 Interpretation

An interesting aspect was that almost only positive emotions were chosen; consequently

the question arised about how to deal with negative emotions: Does it, for instance, make

sense to recommend sad pictures, i.e. places where sad pictures were taken, when the user

is sad, or would it in general also sometimes be beneficial to get recommendations for

an emotion different from the selected? Due to its construction, the recommender system

tries to suggest pictures that express the same emotion as the user’s. Therefore it was

interesting to know which recommendations the participants want to receive, i.e. from

which area in the two-dimensional graphic, in dependence of their chosen emotion in one

of the areas in the graphic, and how useful the participants found the suggestions they

received in general.

The participants commented a lot on this topic of a negative-positive gap between the

chosen emotion and the desired recommendations: Many said that, if negative emotions

CHAPTER 4. EVALUATION 75

are selected, recommendations should rather turn away from the emotion, so suggest a

positive location instead. Some wanted only positive recommendations, also when the

selected emotion was negative, or at least a slightly more positive recommendation than

the selected emotion. Another participant stated that if a negative emotion is selected,

the recommendation should rather be a calm location, or a location which makes the user

feel more positive; if he is sad, not a location with many people should be recommended.

However, others suggested that there could be a choice, so that the user could select what

kind of recommendations are given, especially when the user’s emotion is negative, and

that in the case of a positive selected emotion, also neutral suggestions would be all right.

Some participants even said that the recommendations should always match the chosen

emotion, and that there is definitely a given coincidence and overlap between the own

emotion and expected recommendations.

Further opinions were that not only the negative-positive, but also the passive-active

gap could be addressed: If a user is, for example, bored, the given recommendations

could be more active. The recommended places themselves and the user’s familiarity

with them are also a factor for rating the usefulness of the results: If the system is used at

a known location, it would be preferred to receive recommendations for new or not only

touristic, but rather special places; the distance of the places between each other might

also matter in terms of physical activity, since the suggested route could sometimes be a

bit far. This perception might be different in an environment people are not familiar with:

Then they might be willing to move and explore more and also want to see the highlights,

i.e. more touristic places.

As a conclusion, there are some possible uncertainties and reasons why the system

might not always work as desired. Some participants were saying that the whole recom-

mendation process is a very subjective matter, not only due to own, personal interpreta-

tions of emotions. Since the pictures are on average rather positive, the suggestions for

negative emotions might not be equally accurate, especially when considering the fact

that people might tend to dislike negative recommendations. Furthermore, the emotion

of a picture does not necessarily tell something about its content, i.e. its usefulness as a

recommendation at a particular location. It can also happen that different pictures of the

exact same place contain different emotions, possibly due to different content, objects or

surroundings, such as the season, people in the picture, or present weather, which can

lead to a slightly different emotion score.

Chapter 5

Discussion & Future Work

As already previously mentioned, some aspects of the system are discussable and could

lead to unwanted or inaccurate results. In addition, many parts of the system leave room

for enhancement and further improvement, e.g. by selecting different alternatives, in par-

ticular in the areas of usable data sources, image content and emotion analysis, the rec-

ommender system itself, and the user interface.

5.1 Data Sources

Besides images from Flickr, other websites and photo communities such as 500px 1,

Scoutt 2 or also Twitter 3 for more recent photos could be used as sources of images as

well, provided that they allow access to their respective APIs. Alongside photos, other

types of input data could be used additionally, for example videos - the Clarifai API, for

instance, is able to analyze the contents of videos as well - or text: Tweets on Twitter can

have a geotag, and there has been related work on analyzing the contents of text towards

emotions expressed in it, using hashtags and emojis to find an emotion classification or

rate a score.

Nevertheless, image emotion recognition is a difficult task and especially highly dependent

on the starting data, i.e. the pictures. Filtering inappropriate pictures, such as batches

of pictures taken at the exact same location (position duplicates), as done for the picture

library database local.csv from Munich, could be automated and would increase the

1https://500px.com/
2http://www.scoutt.com/
3https://twitter.com

76

https://500px.com/
http://www.scoutt.com/
https://twitter.com

CHAPTER 5. DISCUSSION & FUTURE WORK 77

quality of the recommendations. A possible solution are the Flickr parameters woeid

and place id, which assign each place specific IDs and could be used to filter position

duplicates by e.g. removing all IDs for one place except one.

5.2 Image Content and Emotion Analysis

The Clarifai API delivers very good results in the recognition of images, as could be seen

from many manual tests and comparisons of the image itself and the returned concepts.

However, different APIs could maybe lead to slightly different classifications; the APIs

and how they work kind of remain as blackboxes. The same holds true for the choice of the

emotion dictionary: A hit rate of about 70% to 80% from the returned concepts within the

dictionary is a good score, and many manual tests again showed that the interpretation

and scoring is reasonable. However, another emotion dictionary or other method of

interpreting emotions from words could lead to slightly different results in regard to the

calculated pleasure and activity values. After all, the perception of images’ and personal

emotions through humans is a very subjective, abstract procedure and complicated to

automate.

5.3 Recommender System

As demonstrated here, the recommender system explicitly asks the user about his emotion.

Therefore, he has to decide how he feels at the moment. An implicit collection of

emotion data could be possible with modern devices, e.g. with wearables, when a camera

capable of recognizing the user’s eye movements is pointed to the eye. The Pupil glasses
4 are capable of eye tracking, can be integrated into Virtual and Augmented Reality (VR

and AR) hardware and could for instance be used to determine the user’s emotion from

this. Building an explicit user profile to optimize the recommendations over time, e.g.

when the user gives feedback and evaluates previous recommendations on a star-based

scale, as it has been done in the evaluation, would be a possible further enhancement.

Personal preferences or expectations could be taken into account as well, if the user can

initially explicitly specify between different operating modes, before he is starting to

use the system: Possible modes could be business trip, vacation - in these two modes, it

is assumed that the user does not know the place and has not visited it before - or a

4https://pupil-labs.com/

https://pupil-labs.com/

CHAPTER 5. DISCUSSION & FUTURE WORK 78

local resident mode, when the system is used by someone who is already familiar with

the surroundings; in that case, a recommender system can still provide recommendations

for new, not already discovered places, or give at least tips for commuting. This idea has

been mentioned also by participants in the study. The system could be refined in such a

way that the user can for instance also select a price category or range in which he wants

to receive recommendations for, e.g. for restaurants or accommodation in a city.

Besides location and emotion, i.e. mood, additional parameters could be used to im-

prove the recommendations, such as time of day - recommendations might change when

requested in the morning or in the evening; a location which has been photographed only

in the evening might be more inviting at this time - or weather. Furthermore, recommen-

dations could be based on the type of activity, e.g. indoor vs. outdoor activities. This

requires some sort of additional recognition: The Flickr API, for instance, features the

parameter geo context for pictures, which holds the values 1 (taken indoors), 2 (taken

outdoors) or 0 (undefined). 1 and 2 are only returned for a very small amount of pictures

though.

Another technical difficulty and issue of the recommender system is not only the possibly

small, but also possibly long distance between the recommendations: The recommender

system suggests the three pictures fitting best to the emotion specified by the user, selected

out of the 50 closest. However, the pictures are not equally distributed in the databases.

This leads to a problem for mobility: The local distance between suggestions can be far, or

the closeness of points to each other can be very high. This did not lead to any problems

in the tests though. A possibility to configure the system in a way that there needs to be

a minimum (and maximum) distance between recommendations could still be

found.

5.4 User Interface

As of now the server is running on localhost. If the Python server would run online, the

webpage would be accessible also from the browser of a smartphone with internet access

(or within a mobile app), where the user’s position could be easily automatically accessed

via GPS, Bluetooth or WiFi, or - with some modifications - on a wearable device. This

would lead to an architectural change: Right now, client and server are the same device,

namely the computer on which the Python server is executed and the webpage is opened.

In the other case, the client would only run the HTML page, while sending and receiving

responses and requests from the remove Python server.

CHAPTER 5. DISCUSSION & FUTURE WORK 79

If used on a smartphone or especially wearable such as Google Glass 5 or its succeessor

in the business area, the Glass Enterprise Edition 6, a possible use case would be to

use live pictures or video from large amounts of users and dynamically tag this data.

More portable (IoT) devices, like wearables or glasses, would mean a higher number of

produced and relevant data. This scenario would open up the possibility for real-time

recommending, possibly realized as a platform service with a cloud-based infrastructure:

A busy day with many events happening in one place would lead to a high amount

of recent, taggable pictures. Many pictures with a positive mood taken from the same

location at the same time indicate a popular or busy location. The user could be notified

and in this way get to know about an event happening right now. However, the scope

of this application is big, and its implementation would be computationally intensive.

Furthermore, such a service would require clear rules for security and privacy, as this

would be an even bigger data-intensive application than the recommender system already

is now in its current state.

Accessing powerful APIs with big databases, like the Google Places API 7, could add

relevant information about places, such as opening times, popularity, ratings, price

category and similar items, for instance other sights, categorized by restaurants, bars,

shops, gas stations, etc., as done e.g. in Google Maps.

Another alternative instead of the removal of inappropriate pictures is MarkerCluster for

Leaflet 8, consisting of CSS and JS. This Leaflet add-on can solve the problem of

pictures not being visible, because they are overlayed by others when these are at the

exact same location, i.e. position duplicates. However, this plugin is incompatible with

the Leaflet sidebar.

5https://developers.google.com/glass/
6http://www.x.company/glass/
7https://developers.google.com/places/
8https://github.com/Leaflet/Leaflet.markercluster

https://developers.google.com/glass/
http://www.x.company/glass/
https://developers.google.com/places/
https://github.com/Leaflet/Leaflet.markercluster

Chapter 6

Summary

Within the scope of this thesis, a full emotion-based recommender system was built,

combining many different components, techniques and technologies. Its emphasis is on

the analysis and interpretation of emotions of users and in pictures, but the system also

covers aspects from fetching the pictures to presenting the calculated data. The system

has a client-server architecture and is built together from various sources like open source

projects, API solutions, research work and studies. Tools, services and algorithms used

for the processing were analyzed, discussed and compared to its alternatives in each step.

An internet connection at the client side is solely needed to display the interactive map

and pictures from remote URLs or to create an own picture database; the data processing

and analysis as well as the calculation of recommendations are done entirely directly on

the server. This leads to a high recommendation speed and keeps the processing load very

low for the client, which is especially wanted in a mobile environment, where computation

and energy usage must be limited. In addition, the amount of data to be stored is very

small on both client and server side; only the graphic in the user interface, the picture

databases and possibly locally downloaded pictures use up space.

Figure 6.1 shows the architecture of the system and all its components, illustrated in a

class diagram. It tries to visualize the whole application logic and all implemented parts

with its respective functions and methods, together with the most important attributes of

each part. The HTML client and Python server communicate with each other via Ajax.

The user is able to access the capabilities of the backend via the JavaScript functions

flickr() and recommend(); the respective methods are then called on the backend side,

here also modeled as own objects in a hierarchy.

80

CHAPTER 6. SUMMARY 81

Figure 6.1: UML class diagram showing architecture and structure of the system

6.1 Conclusions

The thesis focused on the usefulness of the factor emotion, defined by the two dimensions

pleasure and activity, for recommendations. The conducted study was able to proof that

adding the emotion component can help to improve the recommendations, even though

there are several aspects that make the process of recommending complicated, such as the

subjectivity of emotions and the multistage procedure of analyzing and tagging pictures

with emotions.

It would therefore definitely be beneficial for existing recommender systems with many

features to include emotion in general and both the emotion of users and emotions

expressed in pictures in particular as an extra factor for analyzing places to visit and

calculating recommendations from them. In systems where recommendations are already

based on other information as well, the use of emotion as an additional emotion component

can significantly improve the results and especially their level of personalization.

Appendix: Usage of the

Recommender System

There are a few possibilites to make the built application available for everyone to easily

install and use it. Tools such as PyInstaller 1 are able to convert Python code to Windows

executable binaries. Python virtual environments 2, originally meant to be used for testing

Python code running under different versions of Python, can be provided with all required

packages as well.

For the smallest overhead and the possibility to openly share this project on GitHub,

the method of installing all required Python packages via a simple text file was used.

The following is a copy of the file README.md in the repository https://github.com/

andi1996/emotion-recommender. It is a brief summary of the project with its files, and

contains instructions for installing and using it.

An emotion-based recommender system

This project implements an emotion-based recommender system, built within the scope of

my bachelor’s thesis Emotion-based Recommender System for City Visitors Built

on Analyzing Egocentric Images. It recommends places to visit on a map, based on

the emotion of pictures which were taken there, the location and the emotion of the user.

It uses, amongst others, the Flickr API 3, the Clarifai API 4, an emotion dictionary 5,

Leaflet 6, a sidebar for Leaflet 7, and Flask 8. The frontend (index.html) is based on

1http://www.pyinstaller.org/
2http://docs.python-guide.org/en/latest/dev/virtualenvs/
3https://www.flickr.com/services/api/
4https://clarifai.com/developer/quick-start/
5https://www.god-helmet.com/wp/whissel-dictionary-of-affect/index.htm
6http://leafletjs.com/
7https://github.com/Turbo87/sidebar-v2
8http://flask.pocoo.org/

82

https://github.com/andi1996/emotion-recommender
https://github.com/andi1996/emotion-recommender
http://www.pyinstaller.org/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
https://www.flickr.com/services/api/
https://clarifai.com/developer/quick-start/
https://www.god-helmet.com/wp/whissel-dictionary-of-affect/index.htm
http://leafletjs.com/
https://github.com/Turbo87/sidebar-v2
http://flask.pocoo.org/

CHAPTER 6. SUMMARY 83

HTML and JavaScript, the backend (app.py) is based on Python. The communication

between them is realized via Ajax.

How to get started

The project requires a web browser (successfully tested on Chrome and Firefox) and

Python 3.x to be installed.

To begin, run pip install -r requirements.txt --upgrade once before the first run

to install the newest versions of all required Python packages.

Note: The clarifai package installs an older version of the requests package, if installed

manually, and not via the requirements.txt file; however, this version is working as well.

If you are on Windows and installing the package returns an error, you might also need

to install the Microsoft Visual C++ Build Tools 9, including Windows 8/8.1 SDK.

How to run the project

(1) Run python app.py

(2) Open index.html

All used files can be found in the folder static.

Note: The calculation of the first set of recommendations might take a few seconds, all

following recommendations should be ready immediately.

Picture databases

• flickr.csv contains information about pictures from Flickr taken in and around

Helsinki.

• local.csv contains information about pictures from Flickr taken in and around

Munich.

Both databases can be found in the folder static.

Note: The database local.csv is meant to contain information about pictures which are

all downloaded and stored locally in the folder img. For copyright reasons, the img folder

does not contain any pictures. Instead, the pictures can be manually downloaded via the

links in the file links.txt, e.g. by using a download manager.

9https://go.microsoft.com/fwlink/?LinkId=691126

https://go.microsoft.com/fwlink/?LinkId=691126

CHAPTER 6. SUMMARY 84

Creating an own picture database

If you want to create your own picture database via the recommender system (”create

your own by clicking here”), you need to set API keys for Flickr and Clarifai in app.py.

They are specified in the variables FLICKR API KEY and CLARIFAI API KEY. The keys

can be obtained for free from the services’ websites. The database creation takes a few

minutes, because 100 (default number) pictures need to be uploaded via the Clarifai

API for the image content analysis. A message is shown on the commend line for each

successfully analyzed picture, and the browser sends a notification when the database has

been successfully stored in the file flickr-own.csv. You can rename it to flickr.csv

and overwrite the old database to use the new one from now on.

Additional files

xmlParser.py and RecSys.py have the same capabilities as the respective functions called

in app.py. They can be used with command line options, as shown within the files.

csvParser.py can analyze locally saved pictures and add the collected information to an

existing picture database. An example can be found in the folder example.

plots.py can create plots to visualize the data contained in the picture databases.

List of Figures

2.1 Recommender system approaches . 8

2.2 Generic architecture of a mobile tourism recommender system (from

[Gava 14]) . 18

2.3 Russell’s Circumplex model of affect (from [Posn 05]) 27

2.4 Ekman’s six basic emotions . 27

2.5 Example pictures with predicted and ground truth values for valence resp.

arousal, and resulting accuracy (from [Kim 17]) 29

3.1 Picture from flickr.csv showing Esplanadi in Helsinki 32

3.2 Picture from local.csv showing Königsplatz in Munich 35

3.3 Picture from own.csv showing nature . 35

3.4 28 emotions, taken from the paper (from [Hasa 14]) 43

3.5 16 emotions, as assigned in getEmotion() 43

3.6 Pleasure and activity values from database local.csv 46

3.7 Pleasure and activity values from database own.csv 46

3.8 Pleasure and activity values from database local.csv (zoomed) 47

3.9 Pleasure and activity values from database own.csv (zoomed) 47

3.10 2D histogram from database local.csv . 48

3.11 2D histogram from database own.csv . 48

3.12 2D histogram from database local.csv (zoomed) 48

3.13 2D histogram from database own.csv (zoomed) 48

3.14 Pleasure values from database local.csv . 48

3.15 Activity values from database local.csv . 48

3.16 Pleasure values from database own.csv . 49

3.17 Activity values from database own.csv . 49

3.18 Summary of the steps taken to generate the picture databases 49

3.19 Folium markers on map (Munich area) . 58

3.20 Leaflet sidebar . 60

3.21 Markers of database flickr.csv (Helsinki area) 62

3.22 Markers of database local.csv (Munich area) 63

3.23 Markers of database own.csv . 63

86

LIST OF FIGURES 87

3.24 Emotions reduced to nine most important ones (from [Hasa 14]) 65

3.25 Emotion graphic with added emojis . 65

3.26 K-means algorithm for database local.csv with marked centroids 66

3.27 K-means algorithm for database own.csv with marked centroids 66

3.28 Choosing the user’s emotion . 66

3.29 First tab . 68

3.30 Second tab . 68

3.31 Third tab . 68

3.32 Recommendations on the map (Munich example) 69

3.33 Summary of the technologies used for client and server 70

3.34 UML communication diagram showing requests and responses between user

and server . 70

4.1 Gender distribution . 73

4.2 Age distribution . 73

4.3 Ratings by the participants for real recommendations 73

4.4 Ratings by the participants for random recommendations 73

4.5 Emotion graphic translated to German . 74

4.6 Emotions selected by the participants . 74

6.1 UML class diagram showing architecture and structure of the system . . . 81

List of Listings

3.1 get response from Flickr API request . 33

3.2 example Flickr API response . 34

3.3 parse response as xml, remove unnecessary attributes 34

3.4 example XML keys and values left . 35

3.5 get response from Clarifai API request with concepts (limit maximum num-

ber) and parse as json . 38

3.6 example JSON output . 38

3.7 select concepts from json response . 39

3.8 look into dictionary and calculate average of the values for pleasure and

activity . 42

3.9 evaluate and get emotion for values of p and a: assign one of 16 affect words

as the picture’s emotion tag . 43

3.10 xml: add concepts, pleasure, activity and emotion, save as csv 44

3.11 csv: add concepts, pleasure, activity and emotion, save as csv 45

3.12 save all parameters, create arrays . 52

3.13 fill gps data array, calculate 50 closest recommendations 53

3.14 fill pleasure and activity data array, calculate 3 best recommendations . . . 54

3.15 convert recommendation data for proper representation 55

3.16 Folium example . 57

3.17 Leaflet example . 59

3.18 Flask (excerpt) . 61

3.19 function flickr() in HTML . 67

3.20 file structure of index.html . 68

88

Bibliography

[Adom 15] G. Adomavicius and A. Tuzhilin. Recommender Systems Handbook,

Chap. Context-Aware Recommender Systems, pp. 191–226. Springer, 2015.

[Amit 14] Y. Amit and P. Felzenszwalb. Computer Vision, Chap. Object Detection,

pp. 537–542. Springer, 2014.

[Ardi 11] L. Ardissono, T. Kuflik, and D. Petrelli. “Personalization in cultural heritage:

the road travelled and the one ahead”. User Modelling and User-Adapted

Interaction, pp. 73–99, 2011.

[Beel 16] J. Beel, B. Gipp, S. Langer, and C. Breitinger. “Research-paper recommender

systems: a literature survey”. International Journal on Digital Libraries, Vol-

ume 17, Issue 4, pp. 305–338, 2016.

[Bell 07] V. Bellotti and B. Begole. “Activity-Based Serendipitous Recommendations

with the Magitti Mobile Leisure Guide”. Proceedings of the SIGCHI Confer-

ence on Human Factors in Computing Systems, pp. 1157–1166, 2007.

[Burk 07] R. Burke. The Adaptive Web, Chap. Hybrid Web Recommender Systems,

pp. 377–408. Springer, 2007.

[Camp 12] A. Campbell and T. Choudhury. “From Smart to Cognitive Phones”. IEEE

Pervasive Computing, Volume 11, Issue 3, pp. 7–11, 2012.

[Cho 11] E. Cho, S. A. Myers, and J. Leskovec. “Friendship and Mobility: User Move-

ment in Location-Based Social Networks”. Proceedings of the 17th ACM

SIGKDD international conference on Knowledge discovery and data mining,

pp. 1082–1090, 2011.

[Chou 08] T. Choudhury et al. “The Mobile Sensing Platform: An Embedded Activity

Recognition System”. IEEE Pervasive Computing, Volume 7, Issue 2, pp. 32–

41, 2008.

[Cran 09] D. Crandall, L. Backstrom, D. Huttenlocher, and J. Kleinberg. “Mapping the

World’s Photos”. WWW, pp. 1–10, 2009.

90

BIBLIOGRAPHY 91

[Ekma 99] P. Ekman. Handbook of Cognition and Emotion, Chap. Basic Emotions,

pp. 46–60. John Wiley & Sons Ltd., 1999.

[Gava 12] D. Gavalas, M. Kenteris, C. Konstantopoulos, and G. Pantziou. “Web appli-

cation for recommending personalised mobile tourist routes”. IET Software,

Volume 6, Issue 4, pp. 313–322, 2012.

[Gava 14] D. Gavalas, C. Konstantopoulos, K. Mastakas, and G. Pantziou. “Mobile

Recommender Systems in Tourism”. Journal of Network and Computer Ap-

plications, Volume 39, pp. 319–333, 2014.

[Ge 10] Y. Ge, H. Xiong, A. Tuzhilin, K. Xiao, M. Gruteser, and M. J.Pazzani. “An

Energy-Efficient Mobile Recommender System”. Proceedings of the 16th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

pp. 899–908, 2010.

[Gilb 11] A. Gilbert, J. Illingworth, and R. Bowden. “Action Recognition Using Mined

Hierarchical Compound Features”. IEEE Transactions on Pattern Analysis

and Machine Intelligence, pp. 883–897, 2011.

[Gira 08] F. Girardin, J. Blat, F. Calabrese, F. D. Fiore, and C. Ratti. “Digital Foot-

printing: Uncovering Tourists with User-Generated Content”. IEEE Pervasive

Computing, Volume 7, Issue 4, pp. 36–43, 2008.

[Gome 15] C. A. Gomez-Uribe and N. Hunt. “The Netflix Recommender System: Algo-

rithms, Business Value, and Innovation”. ACM Transactions on Management

Information Systems, Volume 6, No. 4, pp. 1–19, 2015.

[Gu 09] T. Gu, Z. Wu, X. Tao, H. K. Pung, and J. Lu. “epSICAR: An Emerging

Patterns based Approach to Sequential, Interleaved and Concurrent Activity

Recognition”. IEEE International Conference on Pervasive Computing and

Communications, pp. 1–9, 2009.

[Hasa 14] M. Hasan, E. A. Rundensteiner, and E. Agu. “EMOTEX: Detecting Emotions

in Twitter Messages”. Academy of Science and Engineering, pp. 1–10, 2014.

[Hodg 07] M. Hodges and M. Pollack. “An ‘Object-Use Fingerprint’: The Use of Elec-

tronic Sensors for Human Identification”. International Conference on Ubiq-

uitous Computing, pp. 289–303, 2007.

[Hu 08] Y. Hu, Y. Koren, and C. Volinsky. “Collaborative Filtering for Implicit Feed-

back Datasets”. IEEE 8th International Conference on Data Mining, pp. 263–

272, 2008.

BIBLIOGRAPHY 92

[Jamb 10] T. Jambor and J. Wang. “Optimizing Multiple Objectives in Collaborative

Filtering”. Proceedings of the fourth ACM conference on Recommender sys-

tems, pp. 55–62, 2010.

[Jann 10] D. Jannach, M. Zanker, and A. Felfernig. Recommender Systems, Chap. Hy-

brid Recommendation Approaches, pp. 124–142. Cambridge University Press,

2010.

[Kent 07] M. Kenteris, D. Gavalas, and D. Economou. “An innovative mobile electronic

tourist guide application”. Personal and Ubiquitous Computing, Volume 13,

Issue 2, pp. 103–118, 2007.

[Khan 13] W. Z. Khan, Y. Xiang, M. Y. Aalsalem, and Q. Arshad. “Mobile Phone

Sensing Systems: A Survey”. IEEE Communications Surveys & Tutorials,

Volume 15, Issue 1, pp. 402–427, 2013.

[Khos 09] M. Khosravy and L. Novik. “Portal services based on interactions with points

of interest discovered via directional device information”. 2009.

[Kim 17] H.-R. Kim, Y.-S. Kim, S. J. Kim, and I.-K. Lee. “Building Emotional Ma-

chines: Recognizing Image Emotions through Deep Neural Networks”. Com-

puting Research Repository, pp. 1–11, 2017.

[Labe 14] S. Labeznik. Computer Vision, Chap. Object Class Recognition (Categoriza-

tion), pp. 533–536. Springer, 2014.

[Lane 10] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Camp-

bell. “A Survey of Mobile Phone Sensing”. IEEE Communications Magazine,

Volume 48, Issue 9, pp. 140–150, 2010.

[Lath 15] N. Lathia. Recommender Systems Handbook, Chap. The Anatomy of Mobile

Location-Based Recommender Systems, pp. 493–510. Springer, 2015.

[Lei 09] Z. Lei and P. Coulton. “A mobile Geo-wand Enabling Gesture based POI

Search an User Generated Directional POI Photograph”. Proceedings of the

International Conference on Advances in Computer Entertainment Technol-

ogy, pp. 392–395, 2009.

[Li 14] W. Li, Z. Liu, and Z. Zhang. Computer Vision, Chap. Activity Recognition,

pp. 13–16. Springer, 2014.

[Lill 13] K. Lillywhite, D.-J. Lee, B. Tippetts, and J. Archibald. “A feature construc-

tion method for general object recognition”. Pattern Recognition, Volume 46,

Issue 12, pp. 3300–3314, 2013.

BIBLIOGRAPHY 93

[Lind 98] G. Linden, J. Jacobi, and E. Benson. “Collaborative recommendations using

item-to-item similarity mappings”. 1998.

[Mach 10] J. Machajdik and A. Hanbury. “Affective Image Classification using Features

Inspired by Psychology and Art Theory”. Proceedings of the 18th ACM in-

ternational conference on Multimedia, pp. 83–92, 2010.

[McCa 06] K. McCarthy, M. Salamó, L. Coyle, L. McGint, B. Smyth, and P. Nixo. “Group

Recommender Systems: A Critiquing based Approach”. Proceedings of the

11th international conference on Intelligent user interfaces, pp. 267–269, 2006.

[McDu 13] D. McDuff, R. el Kaliouby, T. Senechal, M. Amr, J. F. Cohn, and R. Pi-

card. “Affectiva-MIT Facial Expression Dataset (AM-FED): Naturalistic and

Spontaneous Facial Expressions Collected ”In-the-Wild””. IEEE Conference

on Computer Vision and Pattern Recognition Workshops, pp. 881–888, 2013.

[Melv 17] P. Melville and V. Sindhwani. Encyclopedia of Machine Learning and Data

Mining, Chap. Recommender Systems, pp. 1056–1066. Springer, 2017.

[Neid 14] J. Neidhardt, L. Seyfang, R. Schuster, and H. Werthner. “A picture-based ap-

proach to recommender systems”. Information Technology & Tourism, Volume

15, Issue 1, pp. 49–69, 2014.

[Nguy 16] T.-H.-C. Nguyen, J.-C. Nebel, and F. Florez-Revuelta. “Recognition of Ac-

tivities of Daily Living with Egocentric Vision: A Review”. Sensors (Basel),

Volume 16, Issue 1, pp. 72:1–24, 2016.

[Nogu 12] J. M. Noguera, M. J. Barranco, R. J. Segura, and L. Mart́ınez. “A Mobile

3D-GIS Hybrid Recommender System for Tourism”. Information Sciences,

Volume 215, pp. 37–52, 2012.

[Noul 11] A. Noulas, S. Scellato, C. Mascolo, and M. Pontil. “An Empirical Study of

Geographic User Activity Patterns in Foursquare”. Proceedings of the Fifth

International AAAI Conference on Weblogs and Social Media, pp. 570–573,

2011.

[Noul 12a] A. Noulas, S. Scellato, N. Lathia, and C. Mascolo. “Mining User Mobility

Features for Next Place Prediction in Location-based Services”. IEEE 12th

International Conference on Data Mining, pp. 1038–1043, 2012.

[Noul 12b] A. Noulas, S. Scellato, N. Lathia, and C. Mascolo. “A RandomWalk Around

the City: New Venue Recommendation in Location-Based Social Networks”.

International Conference on Social Computing, pp. 144–153, 2012.

[Nova 15] P. K. Novak, J. Smailovic, B. Sluban, and I. Mozetic. “Sentiment of Emojis”.

PLoS ONE, Volume 10, Issue 12, pp. 1–22, 2015.

BIBLIOGRAPHY 94

[Park 07] M.-H. Park, J.-H. Hong, and S.-B. Cho. “Location-Based Recommendation

System Using Bayesian User’s Preference Model in Mobile Devices”. Pro-

ceedings of the 4th international conference on Ubiquitous Intelligence and

Computing, pp. 1130–1139, 2007.

[Piya 13] L. Piyathilaka and S. Kodagoda. “Gaussian Mixture Based HMM for Human

Daily Activity Recognition Using 3D Skeleton Features”. IEEE 8th Conference

on Industrial Electronics and Applications, pp. 567–572, 2013.

[Poll 03] M. Pollack, L. Brown, D. Colbry, C. McCarthy, C. Orosz, B. Peintner, S. Ra-

makrishnan, and I. Tsamardinos. “Autominder: An Intelligent Cognitive

Orthotic System for People with Memory Impairment”. Robotics and Au-

tonomous Systems, Volume 44, Issues 3-4, pp. 273–282, 2003.

[Posn 05] J. Posner, J. A. Russell, and B. S. Peterson. “The circumplex model of affect:

An integrative approach to affective neuroscience, cognitive development, and

psychopathology”. Development and psychopathology, pp. 715–734, 2005.

[Quer 10] D. Quercia, N. Lathia, F. Calabrese, G. D. Lorenzo, and J. Crowcroft. “Rec-

ommending Social Events from Mobile Phone Location Data”. IEEE Inter-

national Conference on Data Mining, pp. 971–976, 2010.

[Quer 11] D. Quercia, I. Leontiadis, L. McNamara, C. Mascolo, and J. Crowcroft.

“SpotME If You Can: Randomized Responses for Location Obfuscation on

Mobile Phones”. 31st International Conference on Distributed Computing

Systems, pp. 363–372, 2011.

[Rach 10] K. Rachuri, C. Mascolo, and M. Musolesi. “Energy-Accuracy Trade-offs of

Sensor Sampling in Smart Phone based Sensing Systems”. Mobile Context

Awareness, pp. 65–76, 2010.

[Rach 11] K. Rachuri, C. Mascolo, M. Musolesi, and P. Rentfrow. “SociableSense: Ex-

ploring the Trade-offs of Adaptive Sampling and Computation Offloading for

Social Sensing”. Proceedings of the 17th annual international conference on

Mobile computing and networking, pp. 73–84, 2011.

[Raja 18] M. Raja, A. Exler, S. Hemminki, S. Konomi, S. Sigg, and S. Inoue. “Towards

pervasive geospatial affect perception”. GeoInformatica, Volume 22, Issue 1,

pp. 143–169, 2018.

[Ricc 07] F. Ricci and Q. N. Nguyen. “Acquiring and Revising Preferences in a Critique-

Based Mobile Recommender System”. IEEE Intelligent Systems, Volume 22,

Issue 3, pp. 22–29, 2007.

BIBLIOGRAPHY 95

[Ricc 15] F. Ricci, L. Rokach, and B. Shapira. Recommender Systems Hand-

book, Chap. Recommender Systems: Introduction and Challenges, pp. 1–35.

Springer, 2015.

[Robe 12] K. Roberts, M. A. Roach, J. Johnson, J. Guthrie, and S. M. Harabagiu. “Em-

paTweet: Annotating and Detecting Emotions on Twitter”. Proceedings of

the Eight International Conference on Language Resources and Evaluation,

pp. 3806–3813, 2012.

[Sava 12] N. S. Savage, M. Baranski, N. E. Chavez, and T. Höllerer. Advances in

Location-Based Services, Chap. I’m feeling LoCo: A Location Based Context

Aware Recommendation System, pp. 37–54. Springer, 2012.

[Sche 15] M. Schedl, P. Knees, B. McFee, D. Bogdanov, and M. Kaminskas. Recom-

mender Systems Handbook, Chap. Music Recommender Systems, pp. 453–492.

Springer, 2015.

[Schi 04] J. Schiller and A. Voisard. Location-Based Services. Morgan Kaufman Pub-

lishers, 2004.

[Skla 12] M. Sklar, B. Shaw, and A. Hogue. “Recommending Interesting Events in Real

Time with Foursquare Checkins”. Proceedings of the sixth ACM conference

on Recommender systems, pp. 311–312, 2012.

[Sten 11] L. Stenneth, O. Wolfson, P. S. Yu, and B. Xu. “Transportation Mode De-

tection using Mobile Phones and GIS Information”. Proceedings of the 19th

ACM SIGSPATIAL International Conference on Advances in Geographic In-

formation Systems, pp. 54–63, 2011.

[Sutt 13] J. Suttles and N. Ide. “Distant Supervision for Emotion Classification with

Discrete Binary Values”. CICLing 2013: Computational Linguistics and In-

telligent Text Processing, pp. 121–136, 2013.

[Vico 11] D. G. Vico, W. Woerndl, and R. Bader. “A Study on Proactive Delivery of

Restaurant Recommendations for Android Smartphones”. Proceedings of the

fifth ACM conference on Recommender systems, pp. 273–276, 2011.

[Whis 09] C. Whissell. “Using the Revised Dictionary of Affect in Language to Quantify

the Emotional Undertones of Samples of Natural Language”. Psychological

Reports, Volume 105, Issue 2, pp. 509–521, 2009.

[Yoo 15] K.-H. Yoo, U. Gretzel, and M. Zanker. Recommender Systems Hand-

book, Chap. Source Factors in Recommender System Credibility Evaluation,

pp. 689–714. Springer, 2015.

BIBLIOGRAPHY 96

[You 16] Q. You, J. Luo, H. Jin, and J. Yang. “Building a Large Scale Dataset for

Image Emotion Recognition: The Fine Print and The Benchmark”. Thirtieth

AAAI Conference on Artificial Intelligence, pp. 308–314, 2016.

[Zhen 08] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W.-Y. Ma. “Understanding Mobility

Based on GPS Data”. Proceedings of the 10th international conference on

Ubiquitous computing, pp. 312–321, 2008.

	Introduction
	Motivation and Problem Description
	Proposed Solution and Contribution
	Outline

	Related Work
	Recommender Systems
	Content-based Filtering
	Collaborative Filtering
	Hybrid Systems

	Mobile Recommender Systems
	Definitions and Tasks
	Data
	Algorithms
	Evaluation
	Summary and Challenges

	Tourism Recommender Systems
	Architectural Styles
	User Involvement
	Recommendation Criteria
	Summary and Challenges

	Computer Vision and its Applications
	Activity Recognition
	Object Detection and Recognition
	Emotion Recognition

	Egocentric Vision
	Emotion Analysis
	Definition of Emotion
	Textual Emotion Detection
	Image Emotion Recognition

	Design of an Emotion-based Recommender System
	Data: Images
	Sources for Collecting Images
	Flickr
	Instagram

	Image Content Analysis
	Google Cloud Vision API
	Clarifai

	Sentiment and Emotion
	Sentiment Analysis
	Emotion Analysis

	Database Analysis
	Summary

	Recommender System
	Available Systems
	Custom System used here
	Saving the Parameters
	Finding the Closest Places
	Calculating the Recommendations
	Selecting the Data for Further Processing

	Summary

	Presentation: User Interface
	Folium
	Leaflet
	Leaflet Sidebar
	Flask
	Displaying the Images
	Choosing the User's Emotion
	Creating an Own Database
	Getting and Displaying the Recommendations
	Summary

	Evaluation
	User Study Design
	Conducting the Study
	Results
	Interpretation

	Discussion & Future Work
	Data Sources
	Image Content and Emotion Analysis
	Recommender System
	User Interface

	Summary
	Conclusions

	Appendix: Usage of the Recommender System
	List of Figures
	List of Listings

