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Mobile Match-on-Card Authentication
Using Offline-Simplified Models
with Gait and Face Biometrics
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Abstract—Biometrics have become important for mobile authentication, e.g. to unlock devices before using them. One way to protect
biometric information stored on mobile devices from disclosure is using embedded smart cards (SCs) with biometric match-on-card
(MOC) approaches. However, computational restrictions of SCs also limit biometric matching procedures. We present a mobile MOC
approach that uses offline training to obtain authentication models with a simplistic internal representation in the final trained state,
wherefore we adapt features and model representation to enable their usage on SCs. The pre-trained model can be shipped with SCs
on mobile devices without requiring retraining to enroll users. We apply our approach to acceleration based mobile gait authentication
as well as face authentication and compare authentication accuracy and computation time of 16 and 32 bit Java Card SCs. Using 16
instead of 32 bit SCs has little impact on authentication performance and is faster due to less data transfer and computations on the SC.
Results indicate 11.4% and 2.4-5.4% EER for gait respectively face authentication, with transmission and computation durations on SCs
in the range of 2 s respectively 1 s. To the best of our knowledge this work represents the first practical approach towards acceleration
based gait MOC authentication.
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1 INTRODUCTION

Biometric authentication, such as fingerprint, gait, or
voice authentication [2] becomes increasingly available
and popular on mobile devices as device unlocking
mechanism. In contrast to classic, knowledge based
mobile authentication approaches like PIN, password,
or graphical pattern [3], user biometrics cannot easily be
changed by users in case they are disclosed. Consequently,
leakage or theft of biometric information has severe
consequences: attackers could e.g. reconstruct original
biometrics from obtained information and use it for replay
attacks [4]. Usage of reconstructed biometrics beyond the
associated mobile device might be possible too, as they
are self-evidently the same across all systems they are
used with (cf. [5], [6], [7], [8]). Further, in contrast to
desktop computers, mobile devices are more easily lost,
stolen, or accessed by attackers without being noticed.
This further increases the risk of biometric information
stored and processed on mobile devices to fall into hands
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of attackers.
Consequently, biometrics processed and stored on mo-

bile devices require adequate protection. One approach
is by using smart cards (SC) [9], which are often shipped
in off-the-shelf mobile devices in the form of secure
elements (SEs). These can either be directly embedded
in the phone hardware, extended with an SD card, or
provided within modern SIM cards [10]. With biometrics
on SCs, the storage and matching part can either be
achieved with template-on-card (TOC) or match-on-card
(MOC) techniques (cf. [2], [11], [12], [13], [14]). With
TOC, biometric templates of the user are recorded by
sensors of the mobile device and stored on the smart card
during enrollment. During authentication the enrolled
templates are fetched from the SC and compared with
new recordings outside the SC. In contrast, with MOC
authentication, new recordings are transfered to the SC
and compared with previously stored templates directly
on the SC.

This leads to the following noticeable differences of
MOC over TOC: on the one hand, after a user’s biometric
templates have been stored on the SC during enrollment,
they never leave the SC. Hence, MOC reduces the
possibilities for leakage or theft of biometric templates
over TOC. On the other hand, comparing users’ biometric
templates with new biometric recordings on the SC is
subject to hardware limitations of the SC, namely transfer
bandwidth to and computational limitations on the SC.
Hence, the portion of data that can be transfered to the
SC and the computations that can be done on the SC have
to be selected carefully. As reducing the risk of leakage
or theft of biometric templates is important, MOC is
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regularly preferred over TOC, despite the accompanying
computational limitations. In turn, these limitations lead
to restrictions in how existing MOC approaches are
frequently designed (cf. [2], [11], [14], [15], [16], [17]):

• MOC approaches usually rely on restricted opera-
tions and logic for matching templates with new
recordings. Hence, they often do not utilize regular,
offline trained machine learning (ML) models. Fur-
ther, they are frequently restricted to a small set of –
sometimes handpicked – features to be used in the
matching process. Both necessarily limit the MOC
discriminative power.

• To reduce computational requirements, most MOC
operations are very domain specific. The underlying
mechanisms are usually strongly adapted to the
used biometrics. This impedes the adaption of new
biometrics in MOC approaches, where it would1
be beneficial to have reusable concepts for feature
extraction, model representation, and matching op-
erations.

To address these restrictions, we aim for enabling a
more generic usage of simple ML models on SCs, which
are computed offline with sufficient computational power
and do not need to be retrained during enrollment of
individual users. The challenge therein lies with the
mentioned limitations, which imply restrictions in how
biometric features and ML models can be calculated and
represented for usage on SCs. We therefore propose a
scheme which trains and generates ML models offline
(e.g. using server infrastructure), then uses the simplified
internal structure of trained models on SCs in the
matching process (Fig. 1).
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Fig. 1. Conceptual overview of the proposed approach.
The SC is highlighted in green.

Models suitable for this approach are those where the
internal structure translates to a simple representation
in the final and fully trained state (e.g. an equation). In
contrast to matching on the SC, the offline training, eval-
uation, and selection necessary to obtain this structure in
the first place can be arbitrarily complex. After obtaining
such a model offline, both features and models need to be
adapted to suit SC restrictions. This includes data types of
features and models, as well as computations using those.
Note that it is desirable to integrate necessary adaption

to features and models already in the offline modeling
process. Doing so allows for more precise estimation of
authentication performance, which is in turn important
for model tuning and selecting a reasonable model and
model configuration for usage on SCs. Consequently,
both offline and on-device processing rely on identical
preprocessing and feature extraction. Further, note that
feature extraction up to feature simplification can be
performed outside the SC. This allows for more complex
and powerful feature extraction while not compromising
any information previously stored on the SC.

In this paper, we demonstrate the proposed approach
on acceleration based gait biometrics as well as face
biometrics, using SCs restricted to either 16 or 32 bit range
integer calculations. We transform features derived from
biometric recordings and model structure used on the SC
to be represented in half of the integer range available
on the SC. This allows for multiplications within the
available integer range. We demonstrate that adequate
MOC authentication is still feasible using limited bit
representation of the obtained model, stored biometric
template, and new biometric recording. Summarizing,
our contributions are:

• We present a generic approach towards biometric
MOC authentication, wherefore we adapt both offline
trained ML models and features to enable their
computation and handling on SCs.

• We apply our approach to face authentication and
acceleration based gait authentication as examples
of biometrics with usually more complex matching
and bigger templates. To the best of our knowledge
this is the first practical approach to gait MOC
authentication with acceleration data.

• We evaluate the feasibility and performance of our
approach with publicly available data sets, using
both 16 and 32 bit Java Card SCs. We thereby
achieve 11.4% and 2.4-5.4% EER for gait respectively
face authentication, while staying in the range of
2 s respectively 1 s for transmission and calculation
durations on SCs.

2 BACKGROUND ON SMART CARDS

Smart cards (SC) such as secure elements (SE) used
in mobile devices, are special integrated circuits which
provide certain characteristics that are useful for secu-
rity sensitive applications: a) cryptographic operations
(e.g. encryption, decryption, hashing) can be performed
directly on the chip, often in hardware. b) SCs are inten-
tionally kept small and less complex to make unintended
behavior/bugs in the system less likely. That is, it is
easier to verify that there are no major security flaws. c)
data and application code in the memory is protected
against unauthorized access and tampering. A serial
interface, which is controlled by the operating system of
the hardware, is the only way to access this data.

However, besides those advantageous characteristics,
SCs also bring limitations that need to be considered for
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applications relying on them: a) data transfer to/from SCs
being restricted in bandwidth (cf. Hölzl et al. [10] with
measurements of 329 B/s for contactless and 3,31 kB/s
for contact cards). b) while some modern SCs already use
a 32 bit architecture, many currently deployed cards are
still based on a 16 bit architectures. That is, there are no
4 byte integers and integer calculations in hardware on
those cards. c) persistent and volatile memory are highly
limited with a maximum capacity of around 1 MB for
current cards. d) finally, SCs are limited in computation
capabilities: for example, there are no native floating
point operations available in hardware. Computations
performed in software are considerably slower than on
PCs or mobile devices due to clock rate of SCs usually
being in the MHz range.

These computation and data transfer limitations affect
both the internal structure of authentication models and
number and type of features that can be used with
SCs. For example, using 4 byte integers in a 16 bit
environment requires more complex data structures in
internal computations (i.e. operations on arrays for simple
multiplications). Hence, using small value ranges for both
model representation and features transferred to the SC
are preferred. Further, transmission bandwidth to/from
the SC is limited, which limits the amount of data that can
reasonably be sent to the SC during user authentication.
In this paper, we consider all these limitations in the
design of the biometric matching algorithm. We show
that it is feasible to overcome the disadvantages of SCs
and make use of their advantageous characteristics in a
generic way.

3 RELATED WORK

To this date, fingerprints are the best researched bio-
metrics with MOC card authentication approaches. They
usually utilize small templates, thereby a small amount
of features (mostly minutiae based), which in turn leads
to relatively simple matching procedures (cf. [11], [17],
[18], [19]). MOC authentication with biometrics other
than fingerprints has been covered by little research.
Examples include Choi et al. [15], which use support
vector machines (SVM) with a limited amount of features
and FPGAs for speaker verification in a MOC manner.
Czajka et al. [13] perform iris recognition by deriving a
1024 bit iris code from samples outside the SC, then match
new recordings with enrolled templates on the card using
a computationally lightweight Hamming distance. This
approach is therefore more similar to fingerprint than e.g.
face authentication in terms of template size. Another
authentication related example is human identification
from CCTV records [20]. Although the approach is
conceptually similar to gait authentication from visual
data (including the matching based on simple distance
metrics), the processing chain, including used features
such as cloth color and human height, represent a major
difference.

3.1 Gait Authentication for SCs

Mobile gait authentication [21] can be based on different
types of data, including visually [22] or floor sensed
information [23], as well as information from sensors
worn by humans themselves [24]. With the latter, dif-
ferent sensor types and sensor positions on the human
body have been utilized [25], where mobile devices like
smartphones have become a powerful source of such data.
They usually feature a number of different sensors and are
frequently with people while they are walking (e.g. inside
a trousers pocket). Especially accelerometers shipped
with mobile phones have been used for acceleration
based gait authentication [26]. As human walk is of
cyclic nature, each step can be seen as repetitive cycle.
For acceleration preprocessing, both cycle and window
based approaches have been utilized in literature [27].
With cycle based approaches – which we focus on in
our gait MOC authentication approach – individual
step cycles are segmented from recordings and used for
subsequent recognition. Analogously, with window based
approaches, a (possibly fixed length) sliding window is
used on recordings instead to segment data chunks.

The matching procedure of acceleration based gait
authentication often involves Dynamic Time Warping
(DTW) as distance metric between two time series [28],
[29], [30]. For two time series of length m and n, regular
DTW brings a memory complexity of at minimum m · n,
which renders it unfeasible for usage on regular SCs.
Though there exist some effective approaches to reduce
the computational complexity of DTW (thereby also
restricting its warping power), such as the Sakaboi-Chiba
band [31], [32], even most limited DTW approaches are
difficult to calculate on SCs.

For acceleration based gait authentication without
using SCs and DTW, various features have been used.
Those include: average, median, min, max, standard
deviation (SD), and median absolute deviation (MAD)
acceleration of individual axes and their magnitude [21],
[33], root mean square (RMS) acceleration [33], mean- and
zero-crossings [33], principal component coefficients of ac-
celeration [34], [35], binned acceleration distribution [21],
[24], [33], time between peaks [21], discrete cosine and
fast Fourier transformation coefficients [36], [37], [38], [39],
and Mel- and Bark-frequency cepstral coefficients [27],
[33]. Further, wavelet transformations have been used
with non-cycle-based acceleration gait data [27], [40] and
floor sensor based gait data [41], as well as on acceleration
based gait style recognition [42], which in contrast to
gait identification or authentication does not distinguish
individuals but gait styles. On those features, again a
number of non-DTW based models have been applied,
including cross-correlation based [43] or tree based
models [21], artificial neural networks (ANN) [21], [44],
support vector machines [33], [35], analysis of variance
(ANOVA) [36], Gaussian mixture models (GMM) [38],
and hidden Markov models (HMM) [33].

To the best of our knowledge there exist no approaches
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to acceleration based gait MOC authentication yet. With
the majority of the approaches described above, either
retraining the model for individual users would be
required, or neither training the model, nor using a ready
trained model to predict new samples is feasible on SCs
with respect to their computation requirements. Still,
similar feature extraction mechanisms can be utilized
in our approach as long as they are computed outside
the SC.

3.2 Face Authentication for SCs

As with mobile gait authentication, mobile face authen-
tication is possible with off-the-shelf mobile devices, as
it only relies on a regular camera being available with
the device. In terms of 2D face authentication outside
SCs, both geometry and appearance based approaches
have been used [45]. Geometric approaches derive facial
features and key positions in face images, then decide on
recognition or authentication using this information. In
contrast, appearance based approaches – which we focus
on in our face MOC authentication approach – derive
features directly from the pixel representation of face
images without considering facial features directly. In
the past, a considerable amount of appearance based
face recognition and authentication approaches has been
discussed (cf. [46], [47], [48], [49]). Important examples
include Eigenfaces [50], based on which further simple
yet effective dimensionality transformation and reduction
approaches have been proposed for face recognition
and authentication, such as Linear Discriminant Anal-
ysis (LDA) [51] or Fisherfaces [52]. Further approaches
additionally employ other models, such as neural net-
works [53] or support vector machines [54], or different
appearance based feature extraction procedures, such as
local binary pattern [55] or wavelet transformation and
related approaches [56].

Previous face MOC authentication mostly relies on us-
ing limited matching on the SC. For example, Tistarelli et
al. [57] propose a face authentication TOC approach in
which they use morphological filtering and adaptive
template matching to extract the position of relevant
facial features for matching. During matching they fetch
enrolled templates from the card and compare them to
new recordings using a space-variant approach based on
Principal Component Analysis (PCA). Lee and Bun [58]
combine PCA projection weights, average intensity and
edge values as features with genetic algorithms (GA) for
feature selection. They thereby largely reduce the amount
of features, which enables the usage of an SVM model
for authentication.

Kittler et al. [59] state that PCA compresses templates
in a suboptimal way for usage on SC. They therefore
propose a MOC approach using a 1D client specific LDA,
of which they utilize the distance of new recordings
to both the stored client template and to the average
impostor to derive a scalar distance measure. As tradeoff
between computational requirements and authentication

performance, Bourlai et al. [60] utilize the client specific
LDA proposed in [59] as feature extraction mechanism,
then use the vector dot product of a new recording and
the enrolled template with a predefined threshold to
obtain an authentication decision. While this approach
has some commonalities with our MOC approach – such
as using LDA, a linear combination, and threshold for au-
thentication decision – both approaches rely on different
core mechanics. a) we do not use samples such as faces
directly, but distances between samples to distinguish
between comparisons of samples of the same person from
those of different people. As we only train our model once
offline we can ship the pre-trained model with SCs on
mobile devices. This allows enrolling new users without
requiring any retraining, while the enrollment of one user
is still completely independent of the enrollment of other
users. b) with a client specific LDA, the distance to the
client template is combined with the distance to the mean
of impostors in a one dimensional way. In contrast, we
use our model and multi-dimensional distances between
a new sample and the reference template to derive an
authentication decision. c) we perform feature extraction
outside the SC. This prevents computing features for
the enrolled template on the SC for each authentication
attempt as done in [60] and allows for computationally
more intensive operations during feature extraction in
general. The downside is that this prevents exchanging
feature extraction for existing templates at a later point
in time.

Summarizing, in contrast to previous work on face
MOC authentication, our approach utilizes the distances
between samples to distinguish between comparisons
of samples from the same person and those of different
people. We can further ship the pre-trained model with
SCs on mobile devices without requiring any retraining
to enroll of users.

4 THREAT MODEL

Biometrics require adequate protection because users
cannot change them as easily as e.g. their passwords
in case of disclosure. This is well known for strong
biometrics such as face, fingerprint, or iris. With these
obtaining a single biometric template might be sufficient
to recreate the biometric information required for authen-
tication and perform a spoofing attack [61]. In contrast,
templates from weak/soft biometrics (e.g. behavioral
biometrics) usually do not represent such a reliable
basis for attacks. Recreating the information required
for authentication is usually non-trivial and requires a
sophisticated attacker, such as with acceleration based
gait authentication. From obtained templates, attackers
need to artificially reproduce the acceleration to be sensed
by the device, e.g. by using a machine that accelerates the
device according to the template. Simply walking like the
legitimate subject has been shown to be unfeasible [62].
The high effort of such attacks reduces the probability,
that they are actually performed successfully. However,
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we need to assume that yet unknown ways of performing
spoofing attacks with behavioral biometrics might emerge
in the future. As they could simply use templates that
have been unprotected and disclosed in the past, both
strong and weak biometrics should be protected alike.

There are two main attack vectors for obtaining biomet-
ric information from mobile devices: attackers obtaining
physical control over a device at a certain point in
time, and attackers running malicious software/trojans
on the mobile device for a certain duration. Assume
attackers obtain physical access to a user’s mobile device
(thereby access to data stored on it) after the user has
enrolled. If no SC is used to store biometrics, attackers
could extract stored templates. This is possible even
if the device comes under attackers’ control long after
enrollment or the last authentication of the legitimate
user. If a TOC approach is used, attackers are required
to trigger an authentication attempt for templates to be
fetched from the SC. This further requires attackers to
monitor the device memory/processor to obtain biometric
information, but still works without interaction of the
legitimate user.

If a MOC approach is used, attackers cannot directly
extract stored biometric information as it never leaves
the SC. Therefore, templates can only be obtained while
they are processed outside the SC (from sensors up to the
SC) – either during enrollment or authentication of the
legitimate user. This implies that attackers need to access
and manipulate a user’s device unnoticed, then need to
wait until the legitimate user enrolls or authenticates to
obtain biometric information (they cannot freely choose
timing anymore). Such attacks likely require attackers
to run malicious software on the mobile device, which
connects them to the second main attack vector. Attackers
having online access and live eavesdropping capabilities
(e.g. using malicious software/trojans) could monitor
sensors and memory to obtain biometric information
directly when it is processed. Protection against such
attacks requires securing/hardening the whole processing
chain from sensors up to the matching procedure and
authentication decision. One approach is to combine
MOC with a trusted execution environment (TEE, e.g.
ARM TrustZone1) that protects information from sensors
up to the SC. Another approach is to combine all steps
in an all-in-one piece of hardware, which is referred to as
system-on-card (SOC). Within the latter, MOC represents
the essential part of matching biometric samples. This
is why both the combination of MOC with a TEE
as well as SOC can be seen as a superset of MOC.
Consequently, providing generic and widely applicable
mobile MOC approaches is an essential part of fully
protecting biometric information on mobile devices from
attackers with live eavesdropping capabilities.

Our work is a first step towards the long-term goal of
protecting mobile biometrics in a transparent and well

1. ARM Trust-Zone: http://www.arm.com/products/processors/
technologies/trustzone/

evaluated way. For the first time it combines a MOC
approach, generic matching concepts, and biometrics with
traditionally bigger, therefore more challenging templates
(such as facial images and gait cycles compared to e.g.
fingerprints). This is why we purely focus on the MOC
aspect in this article and, for the time being, declare
malicious software/trojan attack vectors on the sensor
data processing pipeline out of scope for this paper.
Further attacks on the security of SCs themselves, such as
side-channel attacks by Kocher et al. [63] or Vermoen et
al. [64], which try to extract the biometric template from
the SC itself, are also defined out of scope.

5 METHOD

Our approach is divided into offline model generation
and usage of the obtained model for enrollment and
authentication on the mobile device. Both parts share
steps for preprocessing, feature extraction, and feature
simplification (Fig. 2). The offline part determines the
parametrization which is then applied on mobile devices
alike. On the mobile device those steps are done outside
the SC, which thereby allows for computationally more
complex operations or operations specific to certain
biometrics. Based on preprocessed biometric samples,
offline computation trains an authentication model, sim-
plifies it, applies feature selection, and finally estimates
the resulting authentication performance. The obtained
model is stored on the SC integrated in mobile devices,
which then performs the MOC operation using stored
samples and newly recorded samples. Therefore, no
(re)training of the model is required in order to enroll
new users.

5.1 Offline Model Creation

With B bit SCs, integer operations within B bit range are
done in hardware, therefore are fast. We consequently
strive to keep computations on SCs within this range.
More specifically, we use a linear model on the SC, which
internally computes a result using a linear combination of
feature vector and model slope vector. We therefore adapt
features and model slope so that their linear combination
is possible within B bit range on the SC.

On the one hand those simplifications lead to faster
computations. On the other hand they also lead to a more
coarse resolution of the feature space. For example: the
feature space of 10 features expressed in 8 bit is limited
to 28

10
= 1.21 · 1024 possibilities, which corresponds to a

theoretical maximum entropy of 80 bit. Expressing the
same features in 16 bit results in twice the theoretical
maximum entropy of 160 bit2. One could assume that
using less information in features and models (due to

2. Due to the uneven distribution of biometrics in feature space,
biometric approaches are usually unable to exploit the full feature
space [65]. Hence, depending on the used biometrics and features,
the resulting true entropy is necessarily smaller than this theoretical
boundary.
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Fig. 2. The offline part of our approach computes and simplifies an authentication model, then selects the most
important features to be used on mobile devices. On mobile devices, our approach uses the determined parameters
and model to perform MOC authentication. The SC is highlighted in green.

using 16 instead of 32 bit SCs) would reduce the subse-
quent authentication accuracy. However, our evaluation
indicates the impact to be negligible.

5.1.1 Feature Simplification

To work with B bit integer space SCs, we transform
(scale, shift, and round) original real-valued features to
fit B

2 bit integer range. The transformation uses a vector
of features ~fo that contains one individual feature from
all samples in offline training data, then utilizes its mean
and standard deviation (SD) for transformation (Eq. 1).
The transformation applied to an original feature might
result in values that are bigger or smaller than the B

2
bit space, which we cap at the boundaries (Eq. 2). This
ensures that the B

2 bit space can be optimally used for the
mainstream data, while boundaries are respected also for
new, unseen data with potential outliers. The transformed
vector of features ~ft therefore consists of values in the
range [0, 2

B
2 −1], e.g. for 16 bit space the range of [0, 255].

This transformation is applied to all features.

~fr = round

(
~fo −mean(~fo)
2 · SD(~fo)

)
· (1)

(2
B
2 −1 − 1) + (2

B
2 −1 − 1)

~ft =


0 for ~fr < 0

2
B
2 − 1 for ~fr > 2

B
2 − 1

~fr else

(2)

On mobile devices, the same feature preprocessing and
simplification transformation is applied to features of
new recordings during enrollment and authentication.
Therefore, the mean and SD per feature computed
from offline training data are stored on mobile devices
outside the SC3. After simplifying features, the obtained
simplified biometrics feature vectors are handed to the
SC for purpose of enrollment or authentication.

3. Due to subsequent feature selection only a subset of those features
remain. Storing and performing the simplification is only done for
actually used features.

5.1.2 Model Training

Offline model training uses pairs of samples represented
by their feature vectors. At first, the distance between two
biometric feature vectors ~v1 and ~v2 yields an absolute
distance vector d(~v1, ~v2) of same length, also in B

2 bit
representation (Eq. 3).

d(~v1, ~v2) = |~v1 − ~v2| (3)

We refer to feature distance vectors originated by the
same person as being of the positive class P and to those
originated by different people as being of the negative
class N . Using feature distance vectors from our offline
training data we create a classification model able to
distinguish between the P and N class (for details on
how data partitioning is done for model training and
evaluation see Sec. 6). The obtained model can then be
used on the mobile device to decide if a new feature
distance vector is a P or N sample.

As classification model we use an LDA model [66]. In
contrast to the previously utilized [1] Generalized Linear
Model (GLM) [67], LDA aims to maximize the P -N inter-
class-distance and minimize the P and N intra-class-
distances of samples. Therefore, LDA models can usually
provide for better class separation over GLM models.
However, as both models are linear models, in their ready
trained state both can internally be represented by a
slope ~so (model coefficients) and an additional intercept
I (offset to the origin of the coordinate system). For a
distance vector ~d from a template and a new recording,
those are used to predict the class membership Cd using
a linear combination (Eq. 4).

Cd =

P for
∑
i

~so � ~d < I

N else
(4)

Such linear combinations are simple enough to be com-
puted on a SC, which is a core reason for choosing this
model type. From training we obtain the optimal slope,
intercept, and threshold – which are later used to predict
the class of new samples in both an offline evaluation of
our approach as well as the application case of on-device
authentication.
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5.1.3 Model Simplification
The slope ~so and intercept I obtained from model training
are real-valued and, similar to biometric features, have
to be simplified to enable their usage on a B bit integer
SC. We therefore scale original model coefficients ~so
to optimally fit an B

2 bit space and apply a cap at
boundaries, resulting in a transformed slope ~st (Eq. 5
and 6). In contrast to transforming biometric features
(Eq. 1), no shift is applied. This would otherwise change
the meaning of coefficients, as coefficients around 0
have less influence on the result than those with higher
absolute values.

~sr = round
(

~so
2 · SD(~so)

)
· (2B

2 −1 − 1) (5)

~st =


−(2B

2 −1 − 1) for ~sr < −(2
B
2 −1 − 1)

+(2
B
2 −1 − 1) for ~sr > +(2

B
2 −1 − 1)

~sr else

(6)

Having both feature distance vectors and the slope in B
2

bit integer representation now allows for their piecewise
multiplication on SCs in B bit integer range (see Sec. 5.2).
Therefore, this can be done efficiently on SCs that only
support calculations in B bit integer range in hardware.

5.1.4 Feature Selection
After model training, features that are associated to
small coefficients necessarily have small influence on the
output – hence both feature and coefficient can possibly
be removed without severely influencing classification
performance. As selection criteria we thereby use the
strongest absolute coefficient cmax as reference: a coeffi-
cient ci is selected if it fulfills ci ≥ α · cmax, with α in
the range [0, 1]. For details on used thresholds α and
number of selected features for individual biometrics see
Section 6.

By performing feature selection we achieve reduced
storage requirements and computations on the SC, as well
as reduced features to transfer to the SC, which therefore
reduces the overall SC processing duration. Another,
smaller advantage is that relying on stronger features
could slightly increase overall predictive power of the
model. However, as small coefficients do not necessarily
denote features completely unimportant for separating
classes, prediction capabilities might as well be slightly
reduced by doing so.

5.2 Mobile Device: Enrollment and Authentication
Preparation of mobile devices comprises storing the
feature normalization and simplification parameters on
the mobile device, as well as storing the model (slope and
intercept) directly on the SC. After data recording, en-
rollment and authentication perform data preprocessing,
feature extraction, and feature simplification as stated in
Sec. 5.1. On mobile devices those can be done outside the
SC, as they do not use any information about templates
previously stored on the SC. For enrollment, m feature

vectors – derived from m newly recorded biometric
samples – are transferred to the SC, where they are
stored in the enrolled template for later usage. No further
calculations are done on the SC. For authentication, n
feature vectors from n newly recorded biometric samples
are transferred to the SC. As this latter transmission is
done for each authentication attempt, the transfer period
is important and measured in our evaluation in Sec. 6.

On the SC we perform m · n comparisons between all
m stored reference samples and all n newly transmitted
samples using the stored, offline-computed model. To
keep those m · n linear combination within a range of B
bit (especially during summing intermediate, piecewise
products of slope and difference vector), we utilize the
mean value instead of a sum. Hence each intermediate
product is immediately divided by the length of the slope
vector to predict the class Cd (Eq. 7).

Cd =

P for
∑
i

(
~st,i·~di

length(~st)

)
< I

N else
(7)

The resulting m · n predictions, each indicating P or N
class, are treated as votes. We compute a final, binary
authentication decision from them, which is handed from
the SC to the mobile device to authorize or deny an
authentication attempt. If we would instead hand an
authentication probability from the SC to the mobile
device, this would conceptually allow for more flexible
feedback to users. The downside of doing so is the
danger of enabling hill climbing attacks to unlock the
system or deriving information about users’ biometrics
(cf. [8], [68], [69], [70]), which is why we yield only binary
authentication decisions from the SC.

Besides allowing for linear combination in hardware on
B bit SCs, our approach has the advantage of requiring
only (i + 2) · B

2 bits of storage memory on a SC for
the model, when using i features. For example, with 16
bit SCs, a model for 10 features could be expressed in
only 12 bytes of SC storage. Similarly, m samples in an
enrollment template require only m · i · B2 bits of storage.
For example, with 16 bit SCs, 8 samples consisting of 75
features require only 600 byte of SC storage.

6 EVALUATION

We evaluate our approach on 16 and 32 bit SCs with
face and gait biometrics, measuring both SC computation
duration and authentication performance. We use a 16
bit JCOP 2.4.1 SC with 80 kB EEPROM memory running
Java Card version 2.2.2 and a 32 bit SIM-card with
1 MB non-volatile memory and Java Card version 3.0.1.
Communication is done over the contact interfaces of
these cards using the same card reader. To compare
the authentication accuracy of our approach with non-
simplified features and models, we also evaluated the
original, real valued features and models on the same
data.
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6.1 Duration on Smart Cards
The duration of transferring one sample with 75 features
to the SC and yielding an authentication decision back
was measured to be on average 31.5 ms (SD=0.14 ms)
with 16 bit SCs and 16.7 ms (SD=0.08 ms) with 32 bit
SCs. This duration excludes computations on the SC
and scales linearly with the amount of samples sent.
Computing our complete approach on SCs also shows
a nearly linear increase of computation time over both
number of samples in the enrolled template and num-
ber of features per sample (Fig. 3). Those calculations
include the computation of distances between samples
in the enrolled template stored on the SC with newly
transmitted samples, the linear combination of distances
with model parameters determined offline, the voting of
individual results to obtain an authentication decision,
and the yielding thereof.

(a)

(b)

Fig. 3. Average duration of our approach on 16 and 32
bit SCs, including transmissions, for a) different number
of samples in the enrolled template, using 75 features per
sample, and b) different number of features per sample,
using 32 samples in the enrolled template.

In absolute numbers, data transmission time becomes
negligible compared to computation time on the SC. This
implies that changing the number of samples m in the
enrolled template and number of samples n in the new
recording has little impact if the number of total votes
m · n is unaffected. With using m · n = 64 we achieve
an average computation time of 1608 ms and 2010 ms for
16 and 32 bit SCs, and 824 ms and 1032 ms when using
m · n = 32 instead. The increased duration for 32 bit SCs
has two reasons: a) twice the amount of data needs to be
transmitted due to samples containing twice the amount
of information as compared to 16 bit SCs. b) the amount of
data that can be sent in one query is limited to 255 bytes
by the transmission protocol of the SC (cf. application

protocol data units (APDU) in [71]). Consequently, one
16 bit feature is transferred as two separate bytes, of
which conversion to one 16 bit short on the SC requires
additional time. While this limitation could be overcome
by using the extended version of the protocol (extended
length fields in [71]), in our measurements we consider
the short and therefore slower variant for interoperability
with all currently deployed smarts cards.

6.2 Evaluation Setup for Using Different Biometrics

To obtain realistic authentication performance estimates
of people unseen by the model during training, we per-
form a non-overlapping, 50/50 population independent
split [72] on the corresponding datasets. We thereby
assign 50% of participants to the training partition, which
is used for training the model, and 50% of participants to
the test partition, which is only used once for estimating
the performance of the chosen and trained final model
on yet unseen people. We further use only training
data to determine parameters for feature extraction,
simplification, and selection, then use the determined
parameters to transform test data the same way. Within
both training and test partition we use all combinations of
different samples originated by the same person to obtain
P distances and all combinations of samples originated
by different people (within the corresponding partition)
to obtain N distances.

The training partition is used to train and evaluate
different parametrizations of our model to find a suit-
able configuration for distinguishing between P and
N distances. As training and evaluation procedure we
thereby use well established 10-fold cross validation with
10 repetitions and report the fit as Receiver Operating
Characteristics (ROC) curve, Area Under the ROC Curve
(AUC), and Equal Error Rate (EER). After an optimal
parametrization has been found (i.e. minimal coefficient
threshold α and number of votes m · n), the model is
trained again using this configuration and all training
data. The resulting model is evaluated once on the test
partition to obtain a realistic authentication performance
estimate on data of yet unseen people. For this we
report the resulting True Positive Rate (TPR) and True
Negative Rate (TNR). For comparability we additionally
also report the ROC curve, AUC, and EER, when using
all parametrization determined from training on the test
partition, except the final decision threshold.

The resulting model further serves as basis for voting
when using multiple biometric samples in both template
stored on the SC and new recordings for authentication.
Thereby, m cycles are contained in the enrolled template
and n new recordings are provided during authentica-
tion – which results in a total of m · n samples and
votes. For tuning the voting approach we use the same
data partitions, with the training partition being used
to evaluate the authentication performance of different
amount of votes. Then, test data is again used only once
for estimating the authentication performance for the
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final, voting based authentication model on data of yet
unseen people.

6.3 Evaluation with Gait Biometrics
For evaluating our approach with gait biometrics we
utilize cycle based gait authentication based on acceler-
ation data recorded by off-the-shelf mobile devices. In
contrast to previous research we use a MOC approach, a
non-DTW based model, and combine features previously
used in acceleration gait recognition with features from
other domains.

6.3.1 Gait Data Source
For our evaluation we use the gait data set of Muaaz and
Mayrhofer [73] which contains 3D acceleration recordings
of 35 people, each walking about 550 m in total. The data
was recorded with off-the-shelf smartphones featuring
100 Hz 3D accelerometers, with phones being placed
realistically in trousers pockets. Further, for each par-
ticipant, recording was split into two sessions with a gap
of on average 25 days between recording, which allows
for realistic cross-day evaluations of gait authentication
systems. From this data we utilize cross-day, left-pocket
recordings of all participants to train and evaluate our
approach with gait biometrics.

6.3.2 Gait Data Preprocessing and Feature Extraction
Preprocessing mechanisms are adapted from Nickel [33]
as well as Muaaz and Mayrhofer [73], [74], which
comprise of walking detection and preprocessing, as well
as subsequent step detection and preprocessing, which we
briefly summarize here. From 3D acceleration recordings,
we extract walking segments with y-axis acceleration
variance above 0.8m

s2 for at least 10 s. To compensate for
gravity, we remove the mean acceleration segment and
axis, then compute the resulting acceleration magnitude.
As acceleration sampling is not necessarily uniform, we
further perform a linear interpolation to obtain a uniform
sampling rate of 100 Hz. For noise reduction we apply a
Savitzky-Golay filter [75] with window length of 150 ms
and polynomial of 1st order. The core advantage of this
filter over frequently used running mean or median filters
is the better retaining of the original signal shape.

For step cycle segmentation, reference cycles are ex-
tracted from each walking segment, around the middle of
the segment [73]. Those are used to determine previous
and successive starts of cycles in the same walking seg-
ment, which in turn are segmented into individual gait cy-
cle samples of the corresponding individual. Furthermore,
those are linearly interpolated to a uniform length of 100
acceleration values each, which correspond to a duration
of 1 s at a 100 Hz sampling rate. Cycles that diverge
largely from the majority of extracted cycles are further
defined as outliers and discarded. For that purpose we
compute the normalized DTW distance4 between all n

4. This DTW distance calculation is done for data cleaning purposes
outside the SC, consequently is not related to the authentication model
and matching procedure on the SC.

cycles and discard those cycles for which more than
n
2 distances are above a predefined threshold of 0.6.
The remaining gait cycles are used in feature extraction
and subsequently handed to the SC for enrollment or
authentication (Fig. 4).

Fig. 4. Examples of preprocessed gait cycles with a
uniform length of 1 s, consisting of 100 values each.

For each preprocessed cycle we derive a number
of features. In the time domain we utilize the mean,
median, SD, median absolute deviation (MAD), and
autocorrelation (AC) series with a maximum shift of
100 values as features on one cycle. AC has been used
as signal preprocessing in other biometric recognition
tasks, such as electrocardiography recognition [76], but
to our knowledge not yet in acceleration based gait
authentication. To reduce naturally existing inter-feature
correlation of the resulting AC feature vector, we use
only every third value as feature. With a sampling
rate of 100 Hz this corresponds to a shift granularity
of 30 ms. In the frequency domain we compute the fast
Fourier transformation (FFT) of the cycle. As human body
motion sensed by accelerometers usually yield usable
information in the frequency range of about 0-20 Hz
(cf. [77], [78], [79]), we use both frequency power and
phase in this range as features. Frequency power and
phase are added as separate features to a) avoid passing
complex values to models and b) enable separately
treating them (e.g. normalizing and discarding features
individually). Additionally, we also compute a discrete
wavelet transform (DWT) representation of a cycle using
a multiresolution analysis of 6 levels. As wavelet we
utilize a least asymmetric Daubechies wavelet [80] of
length 8. As with FFT features, all wavelet features are
treated as individual features too. In total we thereby
obtain a feature vector of length 177, which we can reduce
to 64 features for both 16 and 32 bit SCs using a feature
selection coefficient threshold of α = 0.35. Therefore, with
gait data our approach requires 66/132 bytes of storage
(for 16/32 bit SCs) for the offline computed model and
64/128 bytes per gait cycle in the enrolled template. With
8 cycles in the template this leads to a total of 578/1156
bytes of storage requirement on the SC.

6.3.3 Gait Model Training and Authentication Results
Due to slightly different amounts of gait cycles being
discarded per participant during preprocessing and data
cleaning, preprocessing results in a total of 2132 and
1943 unique gait cycles in the training and test partition,
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respectively. Due to the size of the training partition and
the resulting training complexity, we use a random subset
of 100000 P and 150000 N distances for training the
model. However, for intra-training evaluation of trained
models, the full training partition size is utilized (Tab. 1).

Partition Cycles P N
Training 2 132 174 410 2 207 243

Test, pop. independent 1 943 168 976 2 158 427

TABLE 1
Gait biometrics: training and test partition sizes, as

amount of gait cycles and the resulting amount of P and
N comparisons.

Gait evaluation results indicate a test partition EER of
about 0.21 when using a single gait cycle in both enrolled
template and new recording for authentication (Tab. 2
and Fig. 5). When using 64 comparisons instead (e.g. 8
samples in both enrolled template and new recording),
we achieve an EER of about 0.114. Results differ only
marginally between 16 and 32 bit SCs, or using the
original, real valued features and models.

Partition Votes SC AUC EER TPR TNR
Training 1 16 bit 0.892 0.179 – –
Training 1 32 bit 0.892 0.179 – –
Training 1 real v. 0.892 0.179 – –

Test 1 16 bit 0.868 0.210 0.787 0.780
Test 1 32 bit 0.867 0.207 0.787 0.797
Test 1 real v. 0.867 0.208 0.787 0.797

Training 64 16 bit 0.927 0.123 – –
Training 64 32 bit 0.928 0.123 – –
Training 64 real v. 0.927 0.123 – –

Test 64 16 bit 0.963 0.114 0.958 0.809
Test 64 32 bit 0.963 0.114 0.959 0.810
Test 64 real v. 0.962 0.115 0.952 0.809

TABLE 2
Gait evaluation results for using a single gait cycle in both
the template and the new recording and a total of 64 votes
(e.g. 8 templates and 8 new recordings to compare to).

(a) 16 bit SC (b) 32 bit SC

Fig. 5. ROC curves for using a single gait cycle in both
the template and the new recording and a total of 64 votes
(e.g. 8 templates and 8 new recordings to compare to).

These results indicate that for acceleration based gait

data, increasing the granularity of model coefficient and
feature space (as required for usage of our approach on
16 bit SCs) does not lead to considerably worse results
over using 32 bit SCs – where the resolution of data is
allowed to be twice as fine – or even real valued features
and models. Using the feature space available with 16 bit
features and model coefficients on 32 bit SCs results in
longer durations, caused by higher feature precision and
the corresponding higher total amount of data transferred
and processed. Further, our results seem comparable with
findings from previous research on the same dataset, with
18% EER when comparing single gait cycles [29] and
94% TNR and 64% TPR when using 4 gait cycles in one
comparison [73]. However, in contrast to our work, those
approaches utilize a computationally intensive DTW, and
do not use SCs to protect gait biometrics.

6.4 Evaluation with Face Biometrics
For demonstrating our approach with face biometrics, we
use a view-based face authentication approach based on
2D wavelet transformed representations of face images
and estimate the authentication performance with two
publicly available face databases.

6.4.1 Face Data Source
To demonstrate our approach on face biometrics we use
subsets of the Yale-B [81] and the Panshot Face Unlock
Database [82]. The Yale-B database contains facial images
illuminated with a light source from different azimuths
and elevations relative to the face. We thereby utilize
face images with maximum azimuth and elevation of
±20◦ between light source and face, which results in a
database subset 511 facial images of 27 participants. In
contrast, the Panshot Face Unlock database contains face
images recorded from 9 different perspectives in a 180◦

semi circle around the head using different recording
hardware. We thereby utilize facial images recorded from
a frontal perspective, which results in a total of 600
images of 30 different participants. For both databases,
we use grayscale, unsegmented (neither face-detected
nor cropped) images, then perform face detection and
segmentation ourselves to obtain faces realistic for a
mobile authentication scenario.

6.4.2 Face Data Preprocessing and Feature Extraction
At first we equalize the image histogram per image, then
perform Viola and Jones face detection [83] to detect and
segment the part of the image related to facial information
into quadratic images. We only consider the face image if
its diagonal is at least 1

4 the diagonal of the original image.
In mobile face authentication scenarios, where users are
within arms reach of their mobile device, requiring such
a relative minimal face image size effectively prevents a
large portion of potential false positive face detections.
Further, if multiple faces are detected, we only consider
the biggest detection. We again equalize the histogram
per face image. Equalization results are different than
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before face segmentation, as background information that
contributed to the equalization has now been removed
from the images (Fig. 6).

(a) Yale-B face database

(b) Panshot Face Unlock database

Fig. 6. Examples of preprocessed, segmented, and
equalized face images from the Yale-B and Panshot Face
Unlock databases handed to feature extraction.

Before deriving features, we downscale images to
reduce processing power required in subsequent steps on
mobile devices and SCs. In preliminary experiments we
used face image sizes of 64×64 and 32×32, in which the
latter turned out to be sufficient for subsequent feature
extraction and MOC face authentication. We therefore
used face images of size 32×32 – but our approach
could be applied analogously to other image sizes as
well. As feature extraction we use 2D discrete wavelet
transformation (2D-DWT) and multiresolution analysis
with a Daubechies Least-Asymmetric 2D Wavelet [80].
The resulting coefficients are treated as feature vector of
length 1365, which can be reduced to 75 features (16 bit
SC), respectively 72 features (32 bit SC), using a maximum
feature coefficient threshold α = 0.95. Therefore, with
face biometrics our approach requires 77/148 bytes for
storing the model (with 16/32 bit SCs) and 75/144 bytes
per face in the enrolled template. With 8 face images in
the template this leads to a total storage requirement of
677/1354 bytes.

6.4.3 Face Model Training and Authentication Results
Due to slightly different amounts of faces detected per
participant we obtain slightly different training and test
partitions for both databases (Tab. 3).

Database Partition Faces P N
Yale-B Training 265 2 376 32 604
Yale-B Test 246 2 205 27 930

Panshot Training 296 2 780 40 880
Panshot Test 273 2 536 34 592

TABLE 3
Face biometrics: training and test partition sizes, as

amount of face images and the resulting amount of P and
N comparisons.

Similar to the results of the gait based evaluation, au-
thentication performance differs only marginally between
16 and 32 bit SCs, or using the original, real valued
features and models (Tab. 4 and Fig. 7). Using the Yale-

Database Partition Votes SC AUC EER TPR TNR
Yale-B Training 1 16 bit 0.980 0.075 – –
Yale-B Training 1 32 bit 0.983 0.067 – –
Yale-B Training 1 real v. 0.983 0.067 – –
Yale-B Test 1 16 bit 0.925 0.159 0.890 0.775
Yale-B Test 1 32 bit 0.932 0.150 0.900 0.784
Yale-B Test 1 real v. 0.932 0.150 0.900 0.784
Yale-B Training 32 16 bit 1.000 1.000 – –
Yale-B Training 32 32 bit 1.000 1.000 – –
Yale-B Training 32 real v. 1.000 1.000 – –
Yale-B Test 32 16 bit 0.997 0.030 0.998 0.933
Yale-B Test 32 32 bit 0.998 0.024 0.996 0.954
Yale-B Test 32 real v. 0.998 0.025 1.000 0.921

Panshot Training 1 16 bit 0.987 0.051 – –
Panshot Training 1 32 bit 0.977 0.070 – –
Panshot Training 1 real v. 0.977 0.070 – –
Panshot Test 1 16 bit 0.909 0.163 0.754 0.892
Panshot Test 1 32 bit 0.907 0.164 0.748 0.885
Panshot Test 1 real v. 0.906 0.164 0.748 0.885
Panshot Training 32 16 bit 0.999 0.012 – –
Panshot Training 32 32 bit 0.995 0.022 – –
Panshot Training 32 real v. 0.994 0.022 – –
Panshot Test 32 16 bit 0.990 0.054 0.792 0.992
Panshot Test 32 32 bit 0.993 0.053 0.797 0.999
Panshot Test 32 real v. 0.993 0.053 0.797 0.999

TABLE 4
Face evaluation results for using a single face image in

both the template and the new recording and a total of 32
votes (e.g. 8 templates and 4 new recording to compare

to) for training and test partitions.

(a) Yale-B, 16 bit SC (b) Yale-B, 32 bit SC

(c) Panshot, 16 bit SC (d) Panshot, 32 bit SC

Fig. 7. ROC curves for using a single face image in both
the template and the new recording and a total of 32 votes
(e.g. 8 templates and 4 new recordings to compare to) for
training and test partitions.
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B database we obtain a test partition EER between 15-
16% without majority voting of comparisons of multiple
face images. Additionally employing a majority vote
boosts results to 2.4-3% EER. Using a 32 instead of 16
bit SC marginally increases the overall authentication
performance, visible in both decreased EER and increased
AUC. Using the Panshot Face Unlock database, we obtain
a slightly worse test partition performance of 16.3%
EER without majority voting, which is decreased to 5.3-
5.4% EER using majority voting. We assume that results
being worse is due to the Panshot Face Unlock database
containing faces with less distinctive features recorded
more uniformly, which makes distinguishing them more
difficult. Overall, results confirm that our approach is also
applicable to both types of SCs with facial biometrics.
Similar to gait results, the gain of using a 32 instead
of 16 bit SC is minimal with face biometrics. Therefore,
using the increased resolution of feature space and model
coefficients available with 32 bit SCs seems unnecessary,
as it primarily leads to an increased duration of our
approach due to bigger amounts of data transferred and
processed.

Summarizing, our approach achieves 11.4% EER for
gait MOC authentication using majority voting over
64 comparisons and 2.4-5.4% EER for face MOC au-
thentication using majority voting over 32 comparisons.
Our approach is faster when using 16 instead of 32
bit SCs, while the increased granularity of feature and
model coefficient space with 16 bit SCs seems to have
little negative impact on authentication performance.
Therefore, the granularity available with 16 bit SCs
seems sufficient to adequately represent gait and face
biometrics with the utilized features. The total duration
of our approach on SCs is in the range of 2 s with
gait and 1 s with face authentication (including data
transmissions and overall slightly faster on 16 than 32
bit SCs). We argue this duration to be a reasonable trade-
off between authentication performance and delay, as
responsiveness will usually be more critical for face than
gait authentication. This is because gait authentication
can be performed passively and continuously. In contrast
to face authentication, users would therefore not actively
perceive delays from an ongoing authentication.

7 CONCLUSIONS

In this article we present an approach towards match-on-
card (MOC) authentication on mobile devices that uses
models created from offline machine learning. We use
model types that feature a simple internal representation
once they are fully trained. To enable their usage on SCs,
we adapt and simplify both used features and models.
The model is computed only once using a dataset of the
corresponding biometrics, then stored on SCs of mobile
devices. Enrollment on mobile devices involves recording
samples of the authorized user and storing their feature
vectors on SCs without requiring retraining the model.
Authentication compares features of newly recorded

samples with enrolled samples on the SC, using the
previously stored model to derive a binary authentication
decision. One major advantage of the proposed approach
is that it can be applied on different biometrics alike,
thereby facilitating the translation of mobile biometric
matching procedures towards MOC in general.

We applied our approach to acceleration based mobile
gait authentication as well as face authentication, utilizing
both 16 and 32 bit Java Card SCs. With gait authentication,
when using 8 cycles in the enrolled template and 8
newly recorded cycles for authentication, we found our
approach to be feasible with an EER of 11.4%. Authenti-
cation time on the SC stays in the range of 2 s, including
data transmissions and authentication computation. To
the best of our knowledge this work represents the
first practical approach towards acceleration based gait
MOC authentication. With face authentication, when
using 8 face images in the enrolled template and 4
newly recorded face images for authentication, we found
our approach to be feasible with an EER of 2.4-5.4%
EER. The authentication time on the SC thereby stays in
the range of 1 s, again including both transmission and
calculation time on SCs. Using 16 instead of 32 bit SCs
seems to have little negative impact on authentication
performance. From this we derive that an adequate
representation of samples and models is possible in the
more granular feature and model coefficient space on
16 bit SCs. Furthermore, using the higher resolution
of information of 32 bit SCs leads to more data being
transferred and more computations on SCs, which overall
make the approach slower than on 16 bit SCs.

Summarizing, these results indicate that our approach
for generic mobile MOC authentication is feasible with
different biometrics on both 16 and 32 bit SCs. In the
future, this work might thereby facilitate the transfer
further mobile biometrics toward using MOC techniques.
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A Multimodal Person Authentication Database Including Face, Voice,
Fingerprint, Hand and Signature Modalities. Berlin, Heidelberg:
Springer, 2003, pp. 845–853.

[19] P. Grother, W. Salamon, C. Watson, M. Indovina, and P. Flanagan,
“MINEX II: Performance of fingerprint match-on-card algorithms
phase II / III report. NIST interagency report 7477 (rev. I),”
Information Access Division, National Institute of Standards and
Technology (NIST), Tech. Rep., May 2009.

[20] H. M. Moon, C. Won, and S. B. Pan, “The multi-modal human
identification based on smartcard in video surveillance system,”
in Proc. IEEE/ACM GreenCom and CPSCom 2010, Dec. 2010, pp.
691–698.

[21] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Cell phone-based
biometric identification,” in Proc. BTAS 2010, Sep. 2010, pp. 1–7.

[22] S. Sarkar, P. J. Phillips, Z. Liu, I. R. Vega, P. Grother, and
K. W. Bowyer, “The humanid gait challenge problem: data sets,
performance, and analysis,” IEEE TPAMI, vol. 27, no. 2, pp. 162–
177, Feb. 2005.

[23] L. Middleton, A. A. Buss, A. Bazin, and M. S. Nixon, “A floor
sensor system for gait recognition,” in Proc. IEEE AutoID 2005,
Oct. 2005, pp. 171–176.

[24] D. Gafurov, E. Snekkenes, and P. Bours, “Gait authentication and
identification using wearable accelerometer sensor,” in Automatic
Identification Advanced Technologies, Jun. 2007, pp. 220–225.

[25] D. Gafurov and E. Snekkenes, “Gait recognition using wearable
motion recording sensors,” EURASIP Advances in Signal Processing,
vol. 2009, pp. 7:1–7:16, Jan. 2009.

[26] M. Tamviruzzaman, S. I. Ahamed, C. S. Hasan, and C. O’brien,
“ePet: When cellular phone learns to recognize its owner,” in Proc.
SafeConfig 2009. NY, USA: ACM, 2009, pp. 13–18.

[27] M. R. Hestbek, C. Nickel, and C. Busch, “Biometric gait recognition
for mobile devices using wavelet transform and support vector
machines,” in Proc. IWSSIP 2012, Apr. 2012, pp. 205–210.

[28] A. Mannini and A. M. Sabatini, “Machine learning methods for
classifying human physical activity from on-body accelerometers,”
Sensors, vol. 10, no. 2, pp. 1154–1175, 2010.

[29] M. Muaaz and R. Mayrhofer, “Orientation independent cell phone
based gait authentication,” in Proc. MoMM 2014. NY, USA: ACM,
2014, pp. 161–164.

[30] X. Wang, Y. Li, and F. Qiao, “Gait authentication based on multi-
criterion model of acceleration features,” in Proc. ICMIC 2010, Jul.
2010, pp. 664–669.

[31] V. Niennattrakul and C. A. Ratanamahatana, “Learning DTW
global constraint for time series classification,” CoRR, vol.
abs/0903.0041, 2009. [Online]. Available: http://arxiv.org/abs/
0903.0041

[32] H. Sakoe and S. Chiba, “Dynamic programming algorithm op-
timization for spoken word recognition,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 26, no. 1, pp. 43–49,
Feb. 1978.

[33] C. Nickel, “Accelerometer-based biometric gait recognition for
authentication on smartphones,” Ph.D. dissertation, Technische
Universität Darmstadt, 2012.

[34] P. Bours and R. Shrestha, “Eigensteps: A giant leap for gait
recognition,” in Proc. IWSCN 2010, May 2010, pp. 1–6.

[35] S. Sprager and D. Zazula, “A cumulant-based method for gait
identification using accelerometer data with principal component
analysis and support vector machine,” WSEAS Transactions on
Signal Processing, vol. 5, no. 11, pp. 369–378, Nov. 2009.
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