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A B S T R A C T

Authentication is an integral part of protecting data on modern mo-
bile devices from unauthorized physical access of third parties. How-
ever, it faces different challenges to suit users’ needs. On the one hand
classic authentication approaches like PIN or password are obtrusive
especially on mobile devices. They impose cognitive load on users
and their input on mobile devices is cumbersome due to small user
interfaces and limited haptic feedback. This is further intensified by
mobile devices being used more frequently but for shorter durations
than classic computers. On the other hand biometrics can provide for
less obtrusive authentication. However, disclosure of biometric data
to third parties can have significant impact as they cannot be changed
as easily as PINs or passwords. To avert this additional risk, embed-
ded smart cards (SCs) can be used to process and store biometric
data. As those are computationally limited this often leads to feature
transformations and matching procedures also being limited. In ad-
dition, in contrast to users authenticating to mobile devices, devices
usually do not authenticate to users. This enables hardware phishing
attacks (users unwittingly authenticating to an identically looking but
malicious phishing device).

This dissertation investigates unobtrusive mobile authentication for
diverse situations in which authentication can be required. It thereby
focuses on authentication approaches that utilize mobile biometrics
and embedded sensors. We investigate generic biometric match-on-
card (MOC) authentication that combines offline machine learning
with simplification of features and authentication models to enable
their usage on SCs. As the approach is generic it can be applied to
different biometrics – demonstrated with gait and face biometrics –
which can facilitate the transition of further mobile biometrics to us-
ing MOC techniques. We further investigate mobile token authentica-
tion to transfer the authentication state from an unlocked device (e.g.
wristwatch) to a locked one (e.g. phone) by briefly shaking both de-
vices conjointly. As shaking patterns are difficult to forge it is difficult
for attackers to perform authentication when they do not have both
devices under their control. We also investigate mobile device-to-user
authentication as countermeasure to hardware phishing attacks and
let devices communicate an authentication secret to users with vibra-
tion patterns. We evaluate our approach using publicly available data,
which reveals authentication durations around 1-2 s and error rates
between 0.2 and 0.02. This indicates both that our approach is feasi-
ble and that room remains for further improving unobtrusive mobile
authentication, e.g. with additional approaches utilizing biometrics
and sensors on mobile devices.
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K U R Z FA S S U N G

Mit modernen Mobilgeräten ist Benutzerauthentifizierung ein inte-
graler Bestandteil zum Schutz von Daten auf Mobilgeräten vor un-
befugtem, physikalischen Zugriff Dritter geworden. Herausforderun-
gen mobiler Benutzerauthentifizierung umfassen kognitive Belastung
(Merken von Geheimnissen), umständliche Eingabe (kleine Benutzer-
schnittstellen, wenig haptisches Rückmeldung) sowie eine höhere Nut-
zungsfrequenz von Mobilgeräten bei reduzierter Dauer pro Nutzung.
Biometrien können hierbei verbesserte Anwendbarkeit ermöglichen,
setzen Benutzer aber auch höheren Risiken hinsichtlich Diebstahl
oder ungewollter Veröffentlichung von Biometrien aus. Integrierte
Smartcards wiederum können zum Schutz von mobilen Biometrien
verwendetet werden, gehen aber mit eingeschränkter Rechenleistung
für Erkennungsverfahren einher. Des Weiteren authentifizieren sich
Mobilgeräte üblicherweise nicht gegenüber ihren Benutzern, was so-
genannte Hardware Phishing Attacks ermöglicht (bei diesen authen-
tifizieren sich Benutzer unwissentlich gegenüber identisch aussehen-
den aber bösartigen Phishing-Geräten).

Die vorliegende Dissertation behandelt mobile Authentifizierungs-
verfahren für verschiedene Anwendungsszenarien unter sicherer Ver-
wendung von Biometrien und integrierten Sensoren. Es wird eine
generische, biometrische Authentifizierung unter Verwendung von
Smartcards vorgestellt, welche Authentifizierungsmodelle und bio-
metrische Eigenschaften vorab vereinfacht um deren Verwendung auf
Smartcards zu ermöglichen. Des Weiteren wird ein Token-basierendes
Authentifizierungsverfahren behandelt, welches durch kurzes gemein-
sames Schütteln zweier Mobilgeräte den Authentifizierungszustand
eines Geräts sicher auf das andere überträgt. Abschließend wird ein
Verfahren zur Authentifizierung von Mobilgeräten gegenüber ihren
Benutzern vorgestellt. Bei diesem übertragen Mobilgeräte unter Ver-
wendung eines Vibrationscodes Informationen zu Benutzern – z.B.
zeitgleich während sich Benutzer gegenüber dem Gerät authentifi-
zieren. Alle Ansätze werden mit öffentlich verfügbaren Datensätzen
evaluiert und zeigen Fehlerraten zwischen 0,2 und 0,02 sowie eine
Dauer im Bereich von 1-2 sec auf. Diese Ergebnisse unterstreichen die
grundlegende Anwendbarkeit der Ansätze und zeigen gleichzeitig
den verbleibenden Spielraum für weitere zukünftige Verbesserungen
mobiler Authentifizierungsverfahren auf – u.a. durch Verwendung
mobiler Biometrien sowie integrierter Sensoren.
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F O R E W O R D

Our modern world and everyday lives have become deeply intercon-
nected with technology. Technologies are developed and invented in-
creasingly faster with increasingly shorter long-term testing phases
before their usage. As a result we rely on newer technologies less
tested for long-term side effects on both global and individual level.
Such technologies might introduce side effects that are revealed only
long after whole societies have started using them. Those might not
only be of technical nature, but could as well be of cultural, psycholog-
ical, or ecological nature, to just name a few. Once a technology has
established itself, societies and individuals might no longer be able to
refrain from using it, even if it brings significant negative side effects
or such are discovered later on. We see diverse examples already af-
fecting our world as a whole as well as individuals on global scale,
such as data privacy with the multitude of computers around us or
the changes of global climate. With a globalized and interconnected
humanity the question for societies and individuals in and after the
21. century concerning new inventions and technologies might conse-
quently change from: “Do I really need to use technology X, given its
advantages and drawbacks?” to “Can I afford to not use technology X
(to avoid its drawbacks)?”. This is because not using a technology that
is considered standard in our modern world might bring other signif-
icant drawbacks for individuals. For example, people refraining from
using such technologies might be confronted with disadvantages in
terms of job choices, relationships, might need to spend additional
time or money, and many more – which puts people under pressure
to use such technologies anyway.

The impact new technologies might have should be taken into con-
sideration during their development instead of neglecting or ignoring
them. Thereby, the goal should not be to in general prevent develop-
ment, inventions, or new technologies. It should instead be to see
the prediction of long-term effects of new technologies as a require-
ment alongside development and to consider the gained knowledge
to adapt development accordingly. To put it simple: it is better to steer
proactively by design than to steer reactively by limitation of defect.
The research area this thesis belongs to is itself only one small part of
this wider context. While this thesis thereby is merely one tiny piece
in the big picture, one tiny step on a long way, readers are invited to
see it within this big picture and as one tiny step into what the author
considers to be the right direction.
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Part I

A U T H E N T I C AT I O N I N M O B I L E
E N V I R O N M E N T S





1
I N T R O D U C T I O N

Personal mobile devices have become an integral part of our mod-
ern society. In recent years both the amount of devices as well as the
amount of tasks that those devices are involved with in everyday life
have risen significantly. This inevitably leads to those devices increas-
ingly having access to, processing, and storing private and sensitive
information. In case such information would be disclosed to unautho-
rized third parties it could be used maliciously in several ways. Well
known examples would include surveillance, espionage, or blackmail-
ing. As a result, data on modern mobile devices deserves adequate
protection from disclosure.

For protecting data processed and stored on mobile devices one
core question arises: what is the root of trust on mobile devices?
Which parts of a mobile device ecosystem should be considered trust-
worthy and safe, and which require additional security measures?
For instance, all components of a mobile device itself could be ma-
nipulated. This includes the mobile device hardware (CPU, sensors,
etc.), bootloader, and operating system (including the kernel) as well
as applications running on the device. Further, mobile devices could
physically be accessed by third parties like they would be legitimate
users in order to obtain access to processed and stored data. In addi-
tion, other parts of mobile environments might not be trustworthy
either. This includes other devices, computers, and services a mo-
bile device communicates with over networks. Well known examples
would include cloud storage or swapped out processing to reduce
computational requirements and battery consumption on mobile de-
vices. Hence, to protect data on mobile devices a broad variety chal-
lenges arise [27, 226]. An important aspect of solutions to these is
that they should not impede the everyday usage of mobile devices.
Amongst others, the challenges towards protecting data on mobile
devices include:

• How to build a root of trust (e.g. secure hardware) for mobile
devices?

• Based on the root of trust, how to achieve operating system
level security? This could include a chain of trust that goes from
hardware over firmware and bootloader to the operating system
in an effective way.

• How to achieve application level security? This could include
third parties being unable or hardly able to use applications for
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4 introduction

malicious purposes, limiting the impact of potentially malicious
applications.

• How to communicate hardware and software based trust of de-
vices to users? This could include indication of security factors
to prevent e.g attacks based on deception of users.

• How to protect mobile devices from unauthorized physical ac-
cess of third parties?

• How to incorporate external third party services in secure ways
(e.g. external storage, swapped out computations)?

In this dissertation we focus on the challenge of how to protect data
on mobile devices from disclosure by unauthorized physical access to
the device. Overall, solutions addressing the above challenges need to
use a corresponding threat model. For example, while preventing dis-
closure of mobile device data to national or state agencies will require
a much broader and thorough threat model the same might be consid-
erably simpler for less sophisticated attackers. National or state agen-
cies might very well gain access to hardware manufacturers to inject
malicious components during device manufacturing or inject vulner-
abilities or backdoors in operating systems. Protection against such is
considerably more difficult than against attackers with less capabili-
ties who are unlikely to have such broad options for attacks. However,
physically accessing mobile devices to obtain private information is
not connected to any special skills and only requires attackers to gain
physical access to the device by any means necessary. Consequently,
such attacks could be carried out by nearly everyone in our modern
society including family members and office colleagues as well as
pickpockets in public transport or places. This is why protecting mo-
bile devices from unauthorized physical access is an integral part of
protecting data on mobile devices.

The most commonly used way of preventing unauthorized physi-
cal access to mobile devices is using authentication mechanisms and
device locking functionality. Thereby legitimate users have to unlock
mobile devices before using them by performing authentication while
unauthorized users cannot unlock such devices as they fail authenti-
cation. Well known variants of mobile device authentication include
PIN, graphical pattern, and biometrics like fingerprints. Although
those approaches are the most commonly used ways of authentica-
tion on modern mobile devices they bring significant drawbacks with
them. These include obtrusiveness in the form of additional cognitive
load (users having to remember and recall a secret) as well as ad-
ditional time to perform the authentication because input of secrets
can be cumbersome due to small screens and limited haptic feed-
back. While biometrics do not bear cognitive load on users they de-
serve even higher protection than PIN or graphical pattern. This is
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because they cannot be chosen freely but are predefined and fixed
per user and for all its applications, and because they cannot easily
be changed in case they are disclosed to third parties. As a conse-
quence, while the usage of biometrics eases mobile authentication it
also exposes its users to additional risks. Despite their drawbacks
those approaches (especially PIN and graphical pattern) are still the
most frequently used authentication approaches with current mobile
devices in 2017 [213]. In addition, usually a single authentication ap-
proach is employed, therefore is the same for all situations in which
authentication is required. This makes suiting user needs in those
naturally very diverse situations even more challenging.

These issues indicate that there is room for improvements towards
less obtrusive mobile authentication approaches that better suit the
diversity of situations in which mobile authentication is required.
Within the greater goal of unobtrusive mobile device data protection,
this dissertation therefore investigates new ways and alternative ap-
proaches to unobtrusive authentication with mobile devices, using
biometrics and embedded sensors and without exposing user data to
additional risks.

1.1 research questions

The work in this dissertation is organized around the following re-
search questions:

• How can authentication that is employed to protect data on mo-
bile devices from unauthorized physical access of third parties
suit the large variety of situations in which authentication might
be required?

• How could authentication with multiple mobile devices be used
as advantage rather than a drawback?

• How to protect biometrics used for authentication on mobile de-
vices from disclosure? How to apply such protection to multiple
biometrics in order to aid secure usage of different biometrics
on mobile devices in the future?

• How can mobile users be protected from hardware phishing
attacks, that is them being deceived into unwittingly revealing
sensitive information to identically looking but malicious phish-
ing devices?

As a result, this dissertation investigates new ways of authentica-
tion with biometrics and sensors on mobile devices, demonstrates
their feasibility, and evaluates their authentication performance with
a respective threat model.
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1.2 contributions

This work contributes to authentication in mobile environments in
different ways. Subsequently we briefly highlight direct contributions
(Sec. 1.2.1) as well as indirect or related contributions that – despite
their relation – are not part of this dissertation (Sec. 1.2.2).

1.2.1 Main Contributions

1.2.1.1 Generic Mobile Biometric Match-on-Card Authentication

To protect biometrics used on mobile devices, a generic machine
learning based biometric match-on-card authentication technique is
developed (Cha. 5). The approach is generically applicable to differ-
ent biometrics and different smart card architectures. It uses offline
machine learning to generate and simplify an authentication model
that can be used on smart cards without requiring retraining for en-
rolling users. Publications include:

• Rainhard Dieter Findling, Michael Hölzl, and René Mayrhofer:
Mobile Match-on-Card Authentication Using Offline-Simplified
Models with Gait and Face Biometrics. IEEE Transactions on
Mobile Computing (TMC). Submitted for review.

• Rainhard Dieter Findling, Michael Hölzl, and René Mayrhofer:
Mobile Gait Match-on-Card Authentication from Acceleration
Data with Offline-Simplified Models. Proc. MoMM 2016: 14th
International Conference on Advances in Mobile Computing
and Multimedia, ACM, 2016, 250-260.

1.2.1.2 ShakeUnlock: Transferring Authentication States Between Mobile

Devices

To provide for additional authentication possibilities on mobile de-
vices, ShakeUnlock is developed (Cha. 6). ShakeUnlock transfers the
authentication state of an already unlocked device (to which users al-
ready authenticated) to another, still locked device to unlock it. Users
briefly shake both devices conjointly to perform ShakeUnlock which
uses sensed acceleration of both devices to ensure they have actually
been shaken by the same hand. Publications include:

• Rainhard Dieter Findling, Muhammad Muaaz, Daniel Hintze,
and René Mayrhofer: ShakeUnlock: Securely Transfer Authen-
tication States Between Mobile Devices. IEEE Transactions on
Mobile Computing (TMC), 2017, 16, 1163-1175.

• Rainhard Dieter Findling, Muhammad Muaaz, Daniel Hintze,
and René Mayrhofer: ShakeUnlock: Securely Unlock Mobile De-
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vices by Shaking them Together. Proc. MoMM 2014: 12th In-
ternational Conference on Advances in Mobile Computing and
Multimedia, ACM, 2014, 165-174. Best paper award MoMM 2014.

• René Mayrhofer, Helmut Hlavacs, and Rainhard Dieter Find-

ling: Optimal Derotation of Shared Acceleration Time Series by
Determining Relative Spatial Alignment. International Journal
of Pervasive Computing and Communications (IJPCC), 2015, 11,
454-466.

• René Mayrhofer, Helmut Hlavacs, and Rainhard Dieter Find-

ling: Optimal Derotation of Shared Acceleration Time Series by
Determining Relative Spatial Alignment. Proc. iiWAS 2014: 16th
International Conference on Information Integration and Web-
based Applications and Services, ACM, 2014, 71-78. Best paper

award iiWAS 2014.

1.2.1.3 Device-to-User Authentication Using Vibration Patterns

As first step towards protecting mobile device users from hardware
phishing attacks, mobile device-to-user authentication is investigated
(Cha. 7). In a first approach it uses device vibration to communicate
authentication information from devices to their users. Publications
include:

• Rainhard Dieter Findling and René Mayrhofer: Towards Device-
to-User Authentication: Protecting Against Phishing Hardware
by Ensuring Mobile Device Authenticity using Vibration Pat-
terns. 14th International Conference on Mobile and Ubiquitous
Multimedia (MUM ’15), ACM, 2015, 131-136.

1.2.2 Other Contributions

Besides the main contributions of this dissertation the author has
made substantial contributions to other work that, despite its close
relation the main contributions, is not part of this dissertation.

1.2.2.1 Mobile Device Usage Characteristics

Usage behavior of modern mobile devices is investigated on a large
scale in an mobile device usage analysis. Special focus lies on usage
of mobile devices while being locked as well as differences by context.
Publications include:

• Daniel Hintze, Philipp Hintze, Rainhard Dieter Findling, and
René Mayrhofer: A Large-Scale, Long-Term Analysis of Mobile
Device Usage Characteristics. Proc. ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 2017, 1. In print.
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• Daniel Hintze, Rainhard Dieter Findling, Sebastian Scholz, and
René Mayrhofer: Mobile Device Usage Characteristics: The Ef-
fect of Context and Form Factor on Locked and Unlocked Usage.
Proc. MoMM 2014: 12th International Conference on Advances
in Mobile Computing and Multimedia, ACM Press, 2014, 105-
114.

• Daniel Hintze, Rainhard Dieter Findling, Muhammad Muaaz,
Sebastian Scholz, and René Mayrhofer: Diversity in Locked and
Unlocked Mobile Device Usage. Proc. 2014 ACM International
Joint Conference on Pervasive and Ubiquitous Computing: Ad-
junct Publication (UbiComp ’14), ACM Press, 2014, 379-384. Win-

ner of the UbiComp/ISWC 2014 Programming Competition award.

1.2.2.2 CORMORANT: Framework for Multi-Modal Mobile Authentica-

tion

To combine different authentication modalities on mobile device COR-
MORANT has been developed. CORMORANT is an authentication
framework that enables combination of different authentication modal-
ities on mobile devices regardless of their attributes. It thereby ac-
counts for transparently collecting individual authentication results
and deriving an overall authentication decision from them. This en-
ables developers of novel mobile authentication approaches to focus
on the authentication approach itself and leave the usage of its au-
thentication result to CORMORANT. Publications include:

• Daniel Hintze, Muhammad Muaaz, Rainhard Dieter Findling,
Sebastian Scholz, Eckhart Koch, and René Mayrhofer: Confi-
dence and Risk Estimation Plugins for Multi-Modal Authenti-
cation on Mobile Devices using CORMORANT. Proc. MoMM
2015: 13th International Conference on Advances in Mobile Com-
puting and Multimedia, ACM, 2015, 384-388.

• Daniel Hintze, Rainhard Dieter Findling, Muhammad Muaaz,
Eckart Koch, and René Mayrhofer: CORMORANT: Towards Con-
tinuous Risk-Aware Multi-Modal Cross-Device Authentication.
Proc. 2015 ACM International Joint Conference on Pervasive
and Ubiquitous Computing: Adjunct Publication (UbiComp ’15),
ACM, 2015, 169-172.

1.2.2.3 Mobile Wrist Vein Authentication

In order to integrate other biometrics in mobile authentication, mo-
bile wrist vein authentication has been investigated. For users wear-
ing wrist watches wrist veins bear the advantage of being right below
the watch. This could enable completely unobtrusive and transpar-
ent wrist vein authentication for modern wrist watches in the future.
Publications include:
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• Pol Fernández Clotet and Rainhard Dieter Findling: Mobile
Wrist Vein Authentication Using SIFT Features. Proc. Eurocast
2017, Springer, 2017. In print.

1.3 thesis organization

This dissertation is organized in two parts: part I focuses on the back-
ground, related work, and the current state of the art, while part II
contains the contribution, including concepts and evaluation data as
well as evaluation results and findings. In part I we describe modern
mobile environments as well as the problem of using classic authen-
tication in such (Cha. 2). We further highlight approaches to improve
authentication with mobile devices, including the discussion of de-
tails of different knowledge, biometrics, and token-based authentica-
tion approaches, as well as the concept of devices also authenticating
to users (Cha. 3).

In part II we introduce our contribution by giving an overview
of our approach (Cha. 4). We investigate generic mobile biometric
match-on-card authentication in depth, stating details about the threat
model, technical approach and solution, evaluation data and setup,
evaluation results, as well as corresponding findings (Cha. 5). We in-
vestigate ShakeUnlock in depth, again stating the threat model, tech-
nical approach and solution including details on its constituent parts,
evaluation data and data recording, evaluation setup, as well as re-
sults and findings (Cha. 6). We further investigate device-to-user au-
thentication and the usage of device vibration patterns to communi-
cate information from mobile devices to their users, including the vi-
bration code design and its evaluation, results, and findings (Cha. 7).
In addition, we recap how our approach changes the overall threat
model for unauthorized physical third party access to mobile devices.
We thereby focus on how our approach impedes possible attacks as
well as which threats remain or have newly arisen with our approach
(Cha. 8). Lastly, we conclude and give an outlook for future work
(Cha. 9).





2
S E C U R I T Y A N D A U T H E N T I C AT I O N W I T H
R E S P E C T T O M O B I L E E N V I R O N M E N T S

This chapter discusses the integration of mobile devices into mod-
ern everyday life and the data mobile devices thereby get access to
(Sec. 2.1), the importance of protecting this data from unauthorized
third party access as well as possibilities for such access (Sec. 2.2), and
the drawbacks of applying classic authentication mechanisms from
desktop computers on mobile devices (Sec. 2.3).

2.1 the mobile device ecosystem : now and in the future

Portable computers in the form of mobile devices have become an im-
portant part of modern life. Mark Weiser envisioned in 1991 [360] that
computers will become increasingly smaller, ubiquitous, and fade
into the background, while at the same time becoming computation-
ally more powerful. This vision has become reality over the past 25

years, as nowadays examples for such devices include – but are not
limited to – smart phones, smart watches, or tablets, which have more
computational capabilities than many mainframe computers in the
past century. One core difference of such devices to classic comput-
ers is their mobility and continuous availability. In contrast to classic
computers, which are less mobile or stationary and require additional
time before usage when they are started, mobile devices are with their
owners in many cases and are usually turned on throughout the day.
Consequently, they are available to users most of the time and ready
to be used. Another core difference between modern mobile devices
and classic computers is the increased sensing and connectivity capa-
bilities. These allow cooperation amongst devices and services with
frequent information gathering and exchange. Examples include de-
vices sensing their contexts or environments using embedded sensors,
such as accelerometers, gyroscopes, magnetometers, temperature and
proximity sensors, cameras, or microphones.

The continuous availability of modern mobile devices and the vast
amount of information available to them enables them to ubiqui-
tously and invisibly aid users in many different situations through-
out daily life. This can be done in both solving small everyday tasks
more cleverly than existing approaches, or in providing aid for tasks
for which no aid existed previously. An example for the latter would
include mobile devices that monitor a user’s sleep and derive the
sleep cycles – which can consequently be used to wake users when
it is easiest to wake up within certain boundaries. As a result mobile

11
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devices aid their users by e.g. saving time, money, help in organizing
things and reduce cognitive load, or help in keeping in touch with
work, friends, and family. Such aid is not limited to smart phones,
smart watches, or tablets, but could also be offered e.g. by intelligent
and connected cars, mobile devices in the areas of sport, health, and
medicine, or devices and sensors used with home automation. The
easier the usage of mobile devices, the more they are available in
everyday tasks, the more information is available to them, and the
broader the application possibilities for such devices become. This
consequently leads to devices being used in more and more situa-
tions and for more and more different tasks.

As a result, users have started to rely and become dependent on
their mobile devices. Well known examples include telephony, mes-
saging, or information lookup while being on the move. Hence, using
mobile devices for everyday tasks is not only convenient but has vir-
tually become a requirement to perform certain tasks in everyday life
effectively. Thereby, the less devices can be left out, the more they
are necessarily involved in such tasks, and the more information they
will again get to sense, process, store, and exchange about their users.

In accordance to Mark Weiser’s vision, in the future there might be
even more small, unobtrusive, and connected mobile devices. How-
ever, more importantly, mobile devices will be more deeply integrated
into everyday tasks than nowadays. Technical limitations of mobile
devices will restrict their usage in less and less situations. This will
lead to them being integrated to or required for everyday tasks more
frequently, further increasing the dependency of their users on them,
and consequently leading to them sensing, processing, storing, and
exchanging even more information about their context and users.
When extrapolating this vision to a more distant future and different
devices, whole populations, countries, and economies could depend
on their mobile devices for everyday tasks – ranging from tasks in
the business sector to tasks in private life. Mobile devices in their
current form are likely only one of the many aspects that participate
to this process. Other devices from other areas, such as the currently
intensively investigated area of automotive computing will play an
important role in aiding users in everyday tasks too (e.g. intelligent
systems built into autonomous cars). These systems will again in-
crease the amount of data that is gathered, processed, stored, and
exchanged about their contexts – as well as their users.

2.2 why mobile device data needs to be protected

2.2.1 Impact of Sensitive Data from Mobile Devices Being Disclosed

The information sensed, gathered, processed, stored, and exchanged
on modern mobile devices should be considered private and be pro-
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tected from unauthorized access of third parties. Even nowadays mo-
bile devices are able to access a fairly comprehensive amount of data
about their context and their users [149–151, 329]. Well-known exam-
ples include, but are not limited to, communications (email, SMS, in-
stant messaging), context information (location), access to non-public
networks (WiFi, VPN), access to payment or identity management ap-
plications, photos, documents, and even health related information
(e.g. heart rate). In addition, with the “Bring your own device” trend
(cf. [237, 337]), employees start to store and process business and com-
pany related data on private mobile devices. This information should
in general be treated as private and sensitive and therefore should be
protected accordingly from unauthorized access of third parties.

Giving some simple examples for which purposes third parties
could maliciously use such information in case it is not protected
accordingly: mobile devices could be used for undetected surveil-
lance of individuals or to disclose private or sensitive information
processed by or stored on those devices [245]. The latter could be
used to perform espionage (e.g. industries or politics) or for black-
mailing individuals or companies, to only name two examples. Think-
ing ahead, through the data mobile devices process and store they
hold a part of users’ identities. By obtaining control over a mobile
device, attackers could potentially obtain partial control over a user’s
identity. This could enable identity hijacking, which enables attackers
to block, delete, or alter a user’s identity. Attackers could further con-
duct malicious actions in the name of the user. Both can have severe
consequences for affected individuals.

The potential harm of such data falling into the hands of unautho-
rized third parties increases alongside the amount and quality of the
data processed and stored on mobile devices. Consequently, the more
data mobile devices are able to sense, aggregate, process, and store,
the higher the chances that disclosed data can be useful for attack-
ers, hence the bigger the potential resulting impact for users. This is
why mobile device security becomes more important with increasing
amounts of information being available to mobile devices.

2.2.2 Threat Model Overview: Unauthorized Access to Mobile Data

As attackers could obtain unauthorized access to mobile device data
on different ways the overall threat model can be divided into several
layers ranging from hardware to software aspects. In terms of hard-
ware, control over any critical hardware in mobile devices (including
CPU and other integrated circuits with access to CPU and/or device
memory) would enable attackers to obtain full control over devices.
This would include access to data stored and processed by applica-
tions running on such devices. An exemplary attack would include
manipulation of blueprints before device manufacturing or manipu-



14 authentication with respect to mobile environments

lation of manufactured devices before they reach customers. Other
ways of accessing mobile device data with manipulated hardware
would include e.g. sensors with malicious functionality which would
give attackers access to sensor data.

In terms of software, attacks could be performed e.g. on the boot-
loader, operating system, application, or even user interface (UI) level.
Exemplary attacks on bootloader or operating system include ex-
ploitation of vulnerabilities on mobile devices (e.g. privilege escala-
tion) that allow attackers to manipulate and obtain control over boot-
loader and/or operating system. In terms of operating systems, such
attacks could involve vulnerabilities in either the operating itself (in-
cluding the kernel) or included third party libraries. Such attacks
could be carried out either using physical access to devices, using
non-privileged software installed on devices, or remotely using secu-
rity flaws in network related operations. A prominent example of the
latter with third party libraries includes CVE-2015-7547, which allows
attackers to potentially perform remote code execution using the libc
library that is shipped with most modern operating systems, thereby
effectively demonstrates the potential impact of such flaws1. Again,
obtaining control over the bootloader or operating system would en-
able attackers to observe/manipulate any application spawned atop.
Exploitation of vulnerabilities of individual applications can again
lead to privilege escalation – if the application is executed with ele-
vated privileges – but can at least be used to obtain access to data
processed and stored by the affected application. Other attacks on
application level include users unwittingly installing and using ma-
licious applications (e.g. Trojans) or benign applications relying on
third party libraries with embedded malicious functions. Again, these
could enable attackers to access data processed and stored by affected
applications. Atop the mentioned attacks, user deception could be
used to obtain access to mobile device data. For example mobile ap-
plications could perform phishing techniques to deceive users into
entering sensitive information in malicious applications – while they
believe to be using the correct application [285].

Beside the mentioned possibilities for unauthorized access to mo-
bile device data on software and hardware level, physical access to
mobile devices could be used to by attackers to access processed and
stored data. Instead of exploiting or injecting vulnerabilities into soft-
or hardware, attackers would use mobile devices like legitimate users.
The device would thereby provide the same functionality to attackers
as to users by providing access to private and sensitive information
processed and/or stored on the device. In this work we focus on
this issue: the unauthorized access of third parties to data processed
and stored on mobile devices using physical access. Attacks based on

1 CVE-2015-7547: https://cve.mitre.org/cgi-bin/cvename.cgi?name=

cve-2015-7547

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-7547
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-7547
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exploitation of vulnerabilities of soft- and hardware components of
mobile devices are outside the scope of this work if not stated other-
wise.

There are two major differences between attacks using vulnerabil-
ities and physical access to mobile devices. While the first could be
used by one attacker to obtain access to many devices, potentially
even remotely, physical access requires proximity to the device, hence
cannot be performed remotely in any way or on many devices in par-
allel. However, exploiting vulnerabilities or foisting malicious applica-
tions to users is connected to certain effort and requires certain knowl-
edge about the exploitation process. In contrast, mobile devices could
be physically accessed by attackers without requiring particularly un-
common knowledge about the device and only require attackers to
obtain physical access to the device by any means. Consequently, at-
tackers are not restricted to parties with sufficient knowledge and
resources but could include family members, colleagues at work, pas-
sengers on streets and public transportation, and many more. While
the mobility of mobile devices provides for convenience it also makes
them easier to be forgotten, lost, or stolen than classic computers.
This further lowers the effort for physical third party access to data
on mobile devices. For example, while physically accessing data on
a home computer might require burglary, a mobile device could be
accessed or stolen e.g. in public transport in an instant if the owner
is inattentive. Furthermore, as mobile devices are powered most of
the time data could be accessed more quickly than with classic com-
puters (which attackers might need to turn on before). This makes
performing quick attacks without users noticing easier for mobile de-
vices than for classic computers.

To summarize, information processed and stored on mobile devices
needs to be protected accordingly from third party access. While at-
tackers can use multiple ways to access this data our work focuses ex-
plicitly on preventing unauthorized physical access to mobile devices
by third parties. To prevent unauthorized physical access authentica-
tion mechanisms can be employed – which we focus on in the next
section.

2.3 classic authentication and its implications in mo-
bile environments

Unauthorized physical access to computer devices can be prevented
using authentication: legitimate users can authenticate and use the
device while other users cannot do so. For this purpose computers
(including mobile devices) usually feature a locking mechanism that
can lock the device and keep it locked while it is not actively used.
Legitimate users need to unlock the device before usage by authen-
ticating to it. Authentication can be categorized into 3 types: using
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knowledge, inherence (biometrics), and possession (tokens) [2, 124].
The most widely used type of authentication uses knowledge, e.g.
by requiring users to enter a secret password or PIN. We therefore
discuss the advantages and drawbacks of knowledge based authen-
tication in general as well as with special regard to the mobile envi-
ronment. Other authentication suitable for mobile devices, including
graphical patterns and biometrics, are discussed in Cha. 3 as they
can be seen as attempts to improve mobile authentication in terms of
obtrusiveness.

2.3.1 Knowledge Based Authentication: PIN and Password

With knowledge based authentication users authenticate to devices
using a secret only they know. Usually the secret is pre-shared be-
tween users and devices and users reveal this secrets to devices e.g.
by entering it on a keyboard or keypad on or connected to the device.
The most widely known and used knowledge based authentication
approaches are PIN (numeric) and password (allowing a wide range
of characters). They are used widely and in many fields of application,
ranging from ATM machines and credit cards to authentication pads
to open door and garages; or from logins to computers and network
like WiFi or virtual private networks (VPN) to all kinds of Internet
services like websites or mail services.

The theoretical authentication strength/security can be quantified
as entropy2. For a certain approach and configuration the entropy S

in bits is derived from the theoretically maximum possible amount A
of different secrets that can exist [312] (Eq. 1).

S =
log(A)

log(2)
(1)

The maximum possible amount A of different secrets thereby de-
pends on the alphabet and length of the PIN or password [256]. For
example, for a 4-digit numeric PIN with alphabet [0-9] A = 104 =

10000 possible secrets exist, which corresponds to an entropy of S ≃
13.2 bit. For a 8-character alphanumeric password with alphabet [a-
zA-Z0-9] A = 628 ≃ 2.18 · 1014 possible secrets exist, which corre-
sponds to an entropy of S ≃ 47.6 bit. The higher this entropy the less
likely brute force attacks are able to guess the one used secret from
the full space of secrets. It is important to note that user chosen secrets
are usually unevenly distributed in the full space of secrets, resulting
in the real entropy of such secrets being lower than the theoretically
possible one [256]. This issue is discussed in more detail in the next
section.

2 It is important to note that entropy is only one important factor in authentication. At-
tackers could use other weaknesses than a small entropy to attack an authentication
approach.
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2.3.2 Knowledge Based Authentication: Advantages and Drawbacks

From a user’s perspective knowledge based secrets have certain ad-
vantages and drawbacks in comparison to other forms of authenti-
cation. Knowledge based authentication approaches are often purely
software based, in contrast to e.g. biometrics or token-based authen-
tication, which often require additional hardware [94]. This allows
their implementation and usage on many different devices as they
only need to feature some capability for users to enter their secret,
which exists with many user interfaces. Further, knowledge based se-
crets can easily be exchanged with a new secret in case they become
known to third parties or possible attackers.

In terms of drawbacks there usually exists a trade-off between se-
curity and usability: increasing security usually lowers usability and
vice versa. In terms of authentication this means that not employ-
ing any authentication leads to the least obtrusive user experience
while adding authentication or increasing its strength will lead to
more obtrusiveness. This is well known for classic computers and
mobile devices alike [3, 36, 136, 143]. With knowledge based authen-
tication reasons for this include, amongst others, time required to
perform the authentication and cognitive load imposed on users by
the authentication secret. The effect of the first is noticeably stronger
on mobile devices: the input of secrets on mobile devices is usually
more cumbersome than on keyboards of classic computers. This is
mainly caused by users being required to use virtual keyboards on
small screens and less haptic feedback [21, 350]. As users want ac-
cess to their devices as fast as possible this leads to certain users not
employing knowledge based authentication at all [245]. Further, en-
tering secrets on mobile devices being more cumbersome also leads
to increased authentication failure rates [135]. This again increases
the average time authentication takes on mobile devices.

Besides requiring additional time, knowledge based authentication
also necessarily imposes cognitive load on users. This is the result
of users being required to memorize and recall the authentication
secret. This leads to a well known decrease in usability of PINs and
passwords when using many or complex authentication secrets (cf. [3,
27, 36, 68, 72, 143, 300, 381, 384]). As a result, users tend to either not
use authentication at all or to choose weak passwords that can more
easily be memorized, but which are also more easily to predict or
guess by attackers. This effect is even worse when users are required
to memorize and maintain multiple different passwords which all
increase the resulting cognitive load [15, 37, 256, 270, 317]. For exam-
ple, Zhang-Kennedy et al. [381] analyze typical password rules, like
not being allowed to reuse passwords, required password length and
complexity, requirements to frequent changes of passwords, etc. They
find that these lead to significant drawbacks for users. If passwords
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are required to be used they suggest to use strong passwords that
are memorable (e.g. from mnemonic phrases – which are known to
introduce weaknesses themselves [189]), to change passwords only if
there is a reason to do so, to strategically reuse passwords, and to
write down passwords but to protect them well (e.g. offline password
list that cannot be obtained by attackers with obtaining control over
a computer). These suggestions all have in common that they aim
to lower the cognitive load imposed on users by knowledge based
authentication approaches.

From an attacker’s perspective knowledge based authentication
can also be attacked using shoulder surfing [304, 334]. Knowledge
based unlocking approaches are vulnerable to shoulder surfing at-
tacks, whereat attackers watch the authentication process and thereby
observe the authentication secret. One well known example of shoul-
der surfing would be attackers observing the PIN authentication on
another user’s mobile device which enables them to unlock the de-
vice once they obtain control over it.

Summarizing, knowledge based authentication has even stronger
drawbacks on mobile devices than on classic computers. Besides the
mentioned reasons this is further amplified by a higher usage fre-
quency but shorter duration per usage of mobile devices [23, 140,
151, 161] – as well as a potential multitude of mobile devices requir-
ing authentication. This causes an increased authentication-to-usage
duration ratio on mobile devices, thereby an increased authentication
overhead over usage time. As a result, this leads to knowledge based
authentication being more obtrusive on mobile devices than on clas-
sic computers in general. However, PINs, passwords, and graphical
patterns3 are still the most widely used forms of authentication on
modern mobile devices in 2017 [213]. This indicates that despite their
drawbacks no other approaches have been able to provide for mobile
users’ needs or act as replacement yet. This further underlines the
need for additional and alternative ways of authentication on mobile
devices towards achieving less obtrusive authentication. Examples for
approaches that aim to advance mobile authentication towards these
goals are discussed in the next chapter.

3 Graphical patterns are discussed in Sec. 3.1.2 as they are a special form of graphical
passwords which have explicitly been developed to address drawbacks resulting
from cognitive load of PINs and passwords.
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A P P R O A C H E S T O I M P R O V E A U T H E N T I C AT I O N
W I T H R E S P E C T T O M O B I L E E N V I R O N M E N T S

As discussed in the previous chapter, classic knowledge based au-
thentication approaches such as using PINs or passwords bring sig-
nificant drawbacks with them by being obtrusive for users. The ob-
trusiveness is further intensified when those are employed with mo-
bile devices. To address those drawbacks, diverse authentication ap-
proaches have been investigated in previous research. While many
of them have been designed to be employed with classic desktop
computers, most of their advantages and drawbacks as well as their
findings and takeaways apply to the mobile environment as well. In
this chapter we give an overview of authentication approaches that
strive for being unobtrusive, hence to facilitate authentication actu-
ally being used instead of being rejected due to its drawbacks [9].
These cover knowledge based authentication approaches, including
graphical passwords and patterns, different biometrics, token-based
authentication, as well as the advantages of combining different au-
thentication modalities. We discuss these aspects with special regards
to the mobile domain. We further highlight how biometrics can be
protected from disclosure to unauthorized third parties – as this is
an aspect of paramount importance when biometric authentication is
employed.

3.1 knowledge based authentication

An important issue of knowledge based authentication including PINs
or passwords is that it bears cognitive load on users. To address this
issue, other knowledge based authentication approaches have been
investigated in the past that aim at achieving reduced cognitive load.
In this section we discuss graphical passwords as one important ex-
ample of such approaches as well as graphical patterns as a special
case that is frequently employed to unlock current mobile devices.

3.1.1 Graphical Passwords

Humans are better at memorizing and recalling visual information
than characters or numbers like PINS or passwords [326]. Graphical
passwords are based on the following idea: they represent passwords
in visual or graphical form to increase their memorability for users,
hence to reduce cognitive load. There exist three major types of graph-
ical passwords: pure recall based, recognition based, or cued-recall
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based graphical passwords [132]. In the following we discuss some
important concepts behind graphical passwords and highlight their
relation impact on authentication in the mobile domain. For a more
comprehensive review of graphical passwords in general we refer to
the surveys of Bidde et al. [31], Hafiz et al. [132], and Suo et al. [326].

3.1.1.1 Graphical Passwords Based on Recall, Recognition, and Cued-Recall

Pure recall based graphical passwords require users to memorize
their secret without showing any information to help recalling the
password. Such would e.g. be drawing password on a blank screen
or on a grid displayed on the screen – without using any possibly
helping background image. Classic passwords can be considered to
be pure recall based. Examples for pure recall based graphical pass-
words include draw a secret (DAS) [172] where users draw their se-
cret on a 2D grid using either a computer mouse or pen (Fig. 1a).
The secret is represented as the ordered sequence of cell coordinates,
which essentially is the order in which users connect cells. DAS serves
as basis for a number of subsequent approaches. The usage of back-
ground images with DAS has been proposed with BDAS [95]. Users
choose the background image they want to draw a secret on. Though
this leads to more complex secrets being chosen than with DAS users
still choose weak secrets [31]. In contrast to DAS, PassDoodle [122,
351] utilizes a completely freehand drawing as password. This re-
quires a more complex matching of secrets to derive two drawings
being the same than with DAS. MasterDoodle [126] in extension of
PassDoodle specifically designed for managing many different such
passwords. With PassShapes [362] passwords consist of strokes. There
exist a total of 8 strokes, each represented by a simple line stroke into
a certain direction and covering a total angle of 45◦. A sequence of
such strokes thereby represents a password. Thereby each character
can be drawn in any size or on any position on the screen to be recog-
nized correctly. Another variant of DAS is PassGo [333] which uses
a different grid and different cells to avoid DAS secrets being close
to cell borders easily causing authentication failure due to touching a
wrong cell.

Recognition based graphical passwords require users to recognize
and select one piece amongst many displayed pieces. This could be
e.g. by the recognition and selection of familiar faces or familiar icons
amongst many faces or icons displayed on a screen. Determining
the correct piece of the secret is thereby based on recognition of
displayed information instead of pure recall. Examples for recogni-
tion based graphical passwords include PassFaces1 [45, 84, 334] and
(Pass)Story [84]. With PassFaces, users recognize and select a famil-
iar face from usually 9 displayed faces (Fig. 1b). There are multiple

1 PassFaces online presence: http://passfaces.com/

http://passfaces.com/
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(a) Draw a secret (DAS) (b) PassFaces (c) PassPoints

Figure 1: Examples for graphical passwords with (a) recall based draw a
secret (DAS), (b) recognition based PassFaces, and (c) cued-recall
based PassPoints [31].

rounds of this selection in which users have to select the correct face
each time to successfully authenticate. As a variant of PassFaces, im-
ages displayed by (Pass)Story show a thematic context instead of a
face. A series of such thematic contexts thereby represents a “story”.
Users select images with context according to their story during au-
thentication, thereby the story acts as the authentication secret. One
advantage of (Pass)Story is that multiple images can be of the same
context, thereby the displayed images for entering the same story can
be different each time.

Cued-recall based graphical passwords combine aspects from pure
recall and recognition based graphical passwords. They usually aid
users in recalling and entering their secret to the mobile device by dis-
playing information related to the secret that is recognized by users.
This could be done using e.g. a background image on which users
utilize keypoints to then draw their secret onto the image. Both mem-
orability and input of the recalled secret is thereby aided by the dis-
played visual information. Examples of cued-recall based graphical
passwords include the patent of Blonder [34] in which a password
is a series of clicks onto predefined points in a displayed image. A
widely considered example is PassPoints [365, 366] which is based on
the approach by Blonder but uses target areas instead of points in the
image which can be clicked with certain tolerance (Fig. 1c). Variants
of PassPoints exist, such as Cued Click Points [65], where instead of
a single image a series of images in presented. The subsequent image
thereby depends on the click area on the previous image. Another ex-
ample includes persuasive cued click points [63] which additionally
tries to influence users towards selecting better passwords containing
more entropy.

3.1.1.2 Graphical Passwords with Mobile Devices

Though many approaches towards graphical passwords can be used
on both classic computers and mobile devices, few approaches have



22 approaches to improve mobile authentication

been designed specifically with mobile devices in focus. For exam-
ple, Jansen et al. [169–171] were amongst the first to explicitly target
mobile devices with graphical passwords. During enrollment, users
select a theme such as “sea” or “cat”. They then get presented either
one image related to the chosen theme with a grid overlay or a grid
containing smaller images (icons) where some are related to the cho-
sen theme. Users then select tiles as password, where the password
consists of both tile content and order of tiles. During authentication
the according images need to be selected in correct order. Due to the
amount of tiles being restricted to 30 the resulting password space
is considered small. SecureUnlock [306] combines different authenti-
cation approaches for mobile devices using Android, including NFC
tags and GesturePuzzle. GesturePuzzle is a recognition based graphi-
cal password that aims to be less affected by shoulder surfing. With it,
different symbols are presented to users aligned in a grid. Users con-
sider a predefined subarea of the grid that indicates the action that
should be performed, such as “draw a square around other icons”.
The user then performs the indicated action on any displayed sym-
bols to perform authentication. The authors estimate a duration of
about 5-8 s to perform the proposed authentication.

Other approaches include Chang et al. [58], who combine keystroke
dynamics based on time and pressure features with graphical pass-
words to enhance authentication security on mobile devices. They
evaluate their approach to result in 12.2% EER without and 6.9% EER
with using pressure features. Chiang et al. [61] propose touchscreen
multi layered drawing (TMD), which is a recall based graphical pass-
word. TMD uses large detached cells to reduce accuracy errors with
users. They evaluate their approach to result in 86-100% authenti-
cation success rate with 15-18 s authentication duration. The related
approach of Sabzevar et al. [295] does not directly target mobile de-
vices but utilizes them in the authentication process. They propose to
combine aspects of recognition and recall based graphical passwords
with mobile devices as a token for two-factor authentication. Thereby
the mobile device is required as second device answer a graphical
password based challenge. This enables users to enter a password on
untrusted terminals. Further, lost or stolen device do not pose imme-
diate danger in terms of fraud authentication.

Summarizing, graphical passwords seem to be easier to memo-
rize and cause less errors during authentication than classic pass-
words [45, 98, 326, 334, 367] (with different studies indicating au-
thentication success from under 50% up to 100% [31] and theoreti-
cally possible password entropy in the range of 4.5 bits [94] to 300

bits [31], depending on the study setup). But graphical passwords
still suffer from the exact same drawbacks as classic passwords. As
with all user chosen knowledge based authentication secrets, users
have difficulties remembering their graphic passwords [62, 98] and
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therefore show a tendency to choose simple graphical passwords that
can more easily be memorized, but which are also more easy to at-
tack [62–64, 89, 98, 258, 338–340]. An exemplary study highlighting
the extent of this problem would be [84], where users showed tenden-
cies to choose passwords related to personal attributes such as race
or gender, and where about 10% of male PassFace passwords could
have be guessed by mere 2 guesses with personal attributes know to
attackers. Additionally, due to easier memorability of graphical pass-
words some approaches also seem be more easily attackable with
shoulder surfing [334]. In contrast, other studies report an average of
7.5 required observations by attackers to perform shoulder surfing for
high entropy approaches (small images, low image quality) and 4.5
observations with low entropy approaches [94]. Further, using a large
amount of small icons can be problematic on mobile device screens as
they tend to be significantly smaller than screens of classic computers.
Entering a secret might become especially cumbersome in such cases
(cf. [367]).

Besides all the mentioned advantages and drawbacks of graphi-
cal passwords, the remaining and most severe drawback is authenti-
cation duration. Most approaches report an authentication duration
much longer than using classic PIN or password, ranging from 5 s
to over 90 s with the majority of approaches in the range of 10 s to
20 s [31, 45, 94, 367]. This can be seen as severe drawback for mobile
users accustomed to shorter authentication durations and would be
a possible explanation for the small adoption of graphical passwords
with mobile devices. Therefore, with their advantages and drawbacks,
graphical passwords can only be assumed suitable for authentica-
tion on mobile devices in some situations. They should therefore not
be seen as possible full replacement of classic passwords on mobile
devices, but more as complementary option for mobile authentica-
tion [305].

3.1.2 Graphical Pattern

Graphical pattern unlock is a special form of graphical password
specifically designed for authentication on modern mobile devices.
As with other graphical passwords the overall goal of graphical pat-
terns is to be less obtrusive than PIN or password based authentica-
tion by being easier to memorize and recall, consequently to bear less
cognitive load on users.

3.1.2.1 Functional Principle of Graphical Patterns

The functional principle behind graphical pattern unlock is to connect
dots displayed on the mobile device screen with the finger in the cor-
rect order. The authentication secret thereby is which dots have to be
connected in which order. A grid of 3× 3 = 9 dots is most frequently
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used (Fig. 2), but other grid sizes and other non-grid arrangements
of dots are possible as well.

(a) N = 9 dots (b) N = 16 dots (c) N = 25 dots

Figure 2: Graphical pattern authentication using different amounts of con-
nectible dots in a grid arrangement [102].

The theoretically possible size of the set A of passwords for a graph-
ical pattern where dots can be connected once in arbitrary order de-
pends on the amount of dots N and the minimum Nmin and maxi-
mum of Nmax dots a password can consist of (Eq. 2) [102]. From this
the resulting maximum possible entropy S of this graphical pattern
can be derived (Eq. 3) [312].

A =

Nmax
∑

n=Nmin

N!
(N−n)!

(2)

S =
log(A)

log(2)
(3)

With the frequently used grid of N = 3× 3 = 9 dots, Nmin = 1 and
Nmax = 9, this would result in 986409 possible passwords which
corresponds to an entropy of about 19.91 bits [102].

Though mobile users have shown some acceptance of graphical
pattern as device unlock on the Android platform [149–151], graph-
ical pattern authentication is still a form of graphical password and
thereby brings the same advantages and drawbacks as other graph-
ical passwords. Like PIN, passwords, other graphical passwords, or
any other knowledge based authentication approaches, graphical pat-
terns bear some cognitive load on users that – while being easier to
memorize and recall due to it being a graphical password approach –
cannot be canceled out completely. Users still face the issue of having
problems to remember more complex patterns or multiple patterns
for multiple devices and authentication services. Consequently, users
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also tend to choose weak graphical patterns for unlocking their mo-
bile devices and tend to reuse patterns across multiple devices [379].
Additionally, in terms of duration on mobile devices drawing a graph-
ical pattern can be considered to be a little more obtrusive than enter-
ing a PIN or password. Unlocking usually takes a little longer with
patterns (on average 2.7 s [150] to 3.1 s [377]) than entering a PIN or
password (on average 1.5 s [377] for PINs and 2.5 s [150] for PINs and
passwords combined). Furthermore, as with most knowledge based
secrets, drawing a graphical patterns also requires user attention as
users most likely have to look at the screen while performing the
authentication.

3.1.2.2 Shoulder Surfing and Smudge Attacks on Graphical Patterns

Besides those user-centric drawbacks, graphical patterns can be at-
tacked by both shoulder surfing and smudge attacks. With graphi-
cal patterns, shoulder surfing works the same way as with all other
knowledge based secrets. Attackers observe the mobile device screen
while the legitimate user draws the secret graphical pattern for au-
thentication. They thereby obtain knowledge of the pattern and the
ability to perform replay attacks using this knowledge. Smudge at-
tacks are a form of attacks specific to drawing based graphical pass-
words. Attackers obtain the mobile device after users have authen-
ticated to it (it does not matter if the device is locked or unlocked
then). Attackers then screen the device display to observe the resid-
ual smudge that might remain on the display (cf. [17, 309, 378]). This
smudge might clearly indicate the graphical pattern used to unlock
the mobile device (Fig. 3).

(a) Graphical pattern (b) Residual smudge

Figure 3: Residual smudge on a mobile device display after performing a
graphical pattern based unlock [378].

There exist approaches to modify graphical pattern authentication
to become resistant to smudge attacks. One such approach is Smudge-
Safe [309] in which a graphical pattern is drawn on top of a displayed
image. For for each authentication a random rotation of the image is
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used. This leads to the smudge remaining on the mobile device dis-
play being uncorrelated to image rotation and thereby the pattern that
needs to be drawn with the next authentication attempt. The authors
find that SmudgeSafe significantly improves security over PIN or reg-
ular graphical pattern authentication in terms of smudge attack resis-
tance. Drawbacks of this approach include reduced entropy in case
of smudge attacks and increased user attention and duration to per-
form the authentication. With attackers taking the observed smudge
into account the underlying entropy is reduced to the granularity of
image rotation in combination with the allowed drawing accuracy
of the graphical pattern. In combination with a graphical password
image analysis as in [89] or [340] the most likely used rotation of
the image for the observed smudge might easily be derived. Further-
more, the authors do not state the average duration their approach
requires for device unlocks. It is reasonable to assume that the dura-
tion is higher than with classic graphical pattern authentication, as
users at first need to recognize the image rotation and only then can
draw their graphical pattern on the image. This also leads to higher
required user attention as users now necessarily need to look at the
device screen to observe the image rotation before they can draw their
graphical pattern to perform authentication.

A similar approach has been investigated by Zezschwitz et al. [378].
They add randomization to graphical patterns to obtain smudge at-
tacks resistance. They tried four slighty different approaches: mar-
bles, compass, dial, and pattern rotation. With marbles the dots of
the graphical pattern are arranged in a circular manner and users
have to drag dots in the correct order towards the screen center. The
resulting smudge always looks similar independently of the order of
dots. With compass the circle instead is randomly rotated for each
authentication attempt and users need to connect dots in the correct
order. With dial the dots are represented by numbers and users need
to perform a “dial” movement similar to dialing with old telephones.
The password thereby is represented by the amount and order of
numbers. The dial movement further leads to residues being wiped
with each new movement which the authors refer to as consecutive
blurring of residues. With pattern rotation a 3× 3 dot pattern is pre-
sented with arbitrary rotation and users have to draw their pattern
according to this rotation. Users have to determine the rotation of
the dot arrangement by an additional compass symbol. This makes
the approach comparable to SmudgeSafe [309]. The drawbacks with
those approaches lie with authentication duration and error. As with
SmudgeSafe, users need to dedicate more attention to authentication
as they need to e.g. determine a rotation before performing authen-
tication in a rotated manner. This leads to increased authentication
duration and error [378].
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Another approach is taken in [8] where wiping the screen is added
as final step to perform authentication. While doing so provides for
smudge attack resistance, its drawback is that users are required to
perform an additional action for authentication that prolongs the to-
tal authentication duration and is difficult to perform with one hand
alone. A different approach is taken in [85] where graphical pattern
authentication is combined with an additional layer of implicit secu-
rity using pattern dynamics. Thereby, additional factors like speed or
pressure of drawing the pattern are considered to estimate if the pat-
tern is really drawn by the legitimate user. The drawbacks of such
approaches are twofold: a) users are required to train the mobile
device to recognize their pattern dynamics. Such pattern dynamics
can lead to legitimate users being rejected and further change over
time (thereby requiring either retraining or online learning for con-
tinuous functionality). b) the approach does not prevent smudge at-
tacks by design but adds a layer of security that cannot be attacked
by smudge attacks. Consequently, when attackers successfully per-
formed a smudge attack and obtained the graphical pattern the secu-
rity of the approach is reduced to the security of the pattern dynamics
recognition alone.

Further adaptations of graphical pattern authentication for mobile
devices exist. One such approach would be [86] where the authentica-
tion is performed using special hardware with fingers on the backside
of the device. The authentication secret thereby consists of a number
of horizontal and vertical strokes performed on backside of device.
The advantage of this approach is that it is more difficult to attack us-
ing shoulder surfing or smudge attacks than other graphical pattern
based approaches. The drawback is that authentication takes signif-
icantly longer (about 4.5 s on average using complex, self-chosen se-
crets) and that special hardware capable of sensing finger movement
on the backside of the device is required.

Summarizing, nearly all proposed knowledge based authentication
approaches have some basic attributes in common. Their common
major advantages are twofold. Most mobile knowledge based au-
thentication approaches are purely software based. Thereby they can
be implemented on most mobile devices with user interfaces with-
out requiring special hardware (only certain approaches need mobile
hardware with additional non-standard capabilities). Further, knowl-
edge based secrets can easily be exchanged with a new secret in case
the secret is disclosed and attackers could have obtained knowledge
about it. In terms of drawbacks, knowledge based authentication ap-
proaches necessarily bear cognitive load on users. This is the case
even when e.g. graphical secrets are used, such as with graphical
passwords or patterns. Though the memorability of such secrets is
increased compared to classic PINs or passwords users still have dif-
ficulties memorizing and recalling their secrets – especially with com-
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plex secrets and when using multiple devices. This is why users show
tendencies to choose weak knowledge based secrets and reuse secrets
across mobile device even with more easily memorable approaches
like graphical passwords or patterns. These further lead to prolonged
durations with many approaches requiring between 5 s and 20 s to
authenticate. Additionally, mobile knowledge based authentication
requires user attention in the form of users looking at the device
screen while authenticating. From an attacker’s perspective, many
mobile knowledge based authentication approaches can be attacked
with shoulder surfing or smudge attacks. In case the approaches are
designed to be less vulnerable or resistant to these they usually add
additional authentication effort, e.g. with requiring additional actions,
prolonging the authentication duration, or increasing the false nega-
tive rate.

Hence, while knowledge based authentication is important not only
for classic computers but also for mobile devices, there is a need for
alternative forms of mobile authentication that are less obtrusive and
bear less cognitive load on users. This is why biometrics and token-
based authentication approaches that aim to be less in obtrusive in
the mobile domain are discussed in the following sections.

3.2 biometrics based authentication

Biometrics are the second most important and widely used authenti-
cation approach with computer related systems. They use biometric
properties of users (inherence) to perform authentication. These range
from fingerprint or face to palmprint or vein authentication [101, 184,
276]. Biometrics have a number of notable advantages and disadvan-
tages over knowledge based authentication. Most importantly, bio-
metrics do not require users to choose or remember secrets for au-
thentication. Thereby, users cannot choose weak secrets in the first
place that would facilitate attackers using brute force or guessing.
This also implies that no cognitive load is imposed on users indepen-
dently of the amount of devices authentication is used on. Further,
biometrics cannot be forgotten or lost, in contrast to knowledge or au-
thentication tokens. However, biometric authentication may require
user attention and time, and the consequences of biometrics used as
authentication secrets being disclosed to third parties is more severe
than with knowledge or token-based authentication. In this section
we highlight aspects and mechanisms of biometrics important to mo-
bile authentication. Certain aspects of face and gait biometrics are
discussed in more detail as those biometrics are used exemplarily
with the evaluation of our approach (Cha. 5).

Biometrics used for authentication can be categorized using differ-
ent attributes [87, 167, 231, 276]. One distinctive category is biometrics
either being physiological or behavioral. With physiological biomet-
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rics a physiological property is used for authentication. Examples in-
clude fingerprint or face authentication and do not necessarily require
users to perform any action. In contrast, with behavioral biometrics
how something is done is used for authentication, which usually re-
quires users to perform an action (e.g. speaking, walking). Examples
would consequently includes speaker or gait recognition. Another cat-
egorization is if biometric authentication is explicit or implicit. With
the first explicit/active user interaction is required for authentication.
An example would be users positioning their iris in front of an iris
scanner. In contrast, with implicit authentication, authentication is
performed without users explicitly or actively performing authentica-
tion. An example would be users being authenticated by their mobile
devices while walking using gait biometrics. Implicit authentication
has the advantage of requiring less user attention, therefore enabling
less obtrusive authentication. One further categorization is if biomet-
rics are strong or weak [167, 252]. Strong biometrics usually lead to
a high confidence in the recognition or authentication result, while
with weak biometrics confidence in results usually is lower. Exam-
ples for strong biometrics include fingerprint or iris and examples for
weak biometrics include voice or gait. Other important properties of
biometrics include continuity and obtrusiveness of biometrics [10, 88].
With continuous biometrics recording has to be done in a continuous
manner. Examples would include sensor time series recordings for
voice or gait biometrics, leading to samples possibly being of differ-
ent lengths. In contrast, with non-continuous biometrics a sample is
recorded non-continuously at a certain point in time, such as with
taking a face or iris image. While there is a correlation of behavioral
biometrics being continuous, physiological biometrics could be uti-
lized in either continuous or non-continuous manner. An example
would include face authentication which could be done either in a
non-continuous – possibly explicit – form or in continuous – possi-
bly implicit – form. The obtrusiveness indicates the effort users need
to explicitly dedicate to authentication when using certain biomet-
rics. While low obtrusiveness is desirable it is not always feasible.
For example, while gait authentication could be done without users
being required to explicitly dedicate any actions to authentication,
iris authentication most likely requires users to position the eye with
respect to the sensor position and to look into the sensor. Though
some biometrics can distinctively be assigned to one of two of the
above groups, many biometrics can be utilized in different ways and
can therefore be assigned to multiple categories (e.g. speaker authen-
tication could both be done explicit when requiring user to read a
challenge out aloud or implicit while users are on the phone).

Biometric recognition and authentication most commonly used on
mobile devices include fingerprint (e.g. Apple TouchID) and face (e.g
Android Face Unlock). We now briefly review a number of biometrics
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that could be used with mobile devices, specifically pointing out the
applicability with respect to mobile recognition and authentication.

3.2.1 Fingerprint

Fingerprint recognition is a strong, non-continuous, and mostly ex-
plicit physiological biometrics. It can be considered the most mature
biometrics in both research and industrial applications with offline
(print, scan) as well as online (live sensor) approaches [54, 69, 87, 214,
273, 376]. Fingerprints consist of different shapes and forms, such
as whorls, plain and tented arches, or left, right, and twin loops
(Fig. 4) [118, 142] which are either used directly for fingerprint recog-
nition or on which feature derivation is applied first to subsequently
perform feature matching.

(a) Whorl (b) Plain arch (c) Right loop (d) Left loop

(e) Central pocket (f) Tented arch (g) Twin loop (h) Accidental

Figure 4: Henry’s fingerprint classes [142] with different forms and shapes
of fingerprints (adapted from [373]).

Different categories of features have been considered in the past
based on singular points, orientation maps, global ridge structure,
ridge frequencies, graphs, or syntactic approaches [6, 116, 373]. To in-
crease image quality before performing feature extraction, different
image enhancement approaches are frequently applied [137]. Recog-
nition and classification of fingerprints and their features have been
based on different models and matching approaches, including syn-
tactic pattern recognition, graph matching, heuristics using singular-
ities and/or (global) ridge structures, or classic pattern recognition
models such as support vector machines (SVM), neural networks
(NN), k-nearest-neighbor (KNN) models, or hidden Markov mod-
els (HMM) [116, 188, 373]. Like other biometrics, fingerprints can
be spoofed [266]. Materials used for fingerprint spoofing range from
gelatin over Play-Doh to silicone and have been shown to successfully



3.2 biometrics based authentication 31

trick even commercial fingerprint authentication systems using cheap
materials [217]. Anti-spoofing for fingerprint ranges from hardware
based to more widely applied software based approaches [69, 217].
Sophisticated attackers with knowledge about the used system and
access to high cost spoofing materials seem to be able to also trick anti-
spoofing fingerprint recognition approaches, which indicates that this
is still an unsolved problem [320].

With mobile devices either touch-based embedded sensors or em-
bedded cameras can be used for fingerprint authentication. Touch-
based fingerprint sensors have the advantage of enabling fast authen-
tication (around 1 s for capturing the fingerprint [123]). They further
are less obtrusive as the fingerprint sensor can e.g. also function as
the device button to turn on the screen – which limits the additional
effort for users making sure that the finger is well pressed to the sen-
sor [123]. The drawback of this type of sensor comes as additional
costs as most mobile devices do not yet ship with embedded finger-
print sensors. This could be explained by the hardware being finger-
print specific, thereby not being reusable for other tasks, like embed-
ded cameras. In contrast to touch-based sensors, embedded cameras
are shipped with most mobile devices already, therefore no additional
hardware is required. The drawback of fingerprint authentication us-
ing embedded cameras comes with increased user effort. Users need
to position their fingerprint in front on the camera, ensure a sharp im-
age (e.g. no motion blur), and a correctly illuminated fingerprint for
authentication to work. One such approach would be the touch-less
fingerprint system in [282]. They use cameras (e.g. of mobile devices)
to capture fingerprints and perform authentication without users be-
ing required to touch any fingerprint sensor. In their evaluation some
illumination conditions turn out to be difficult to perform authentica-
tion. Though they do not consider authentication duration the total
required duration can be assumed to be higher than with touch-based
sensors.

3.2.2 Face

Face recognition is a strong, both explicit and implicit, non-continuous
and physiological biometrics that recognizes individuals by their faces
(Fig. 5).

Both geometry and appearance based approaches have been used
to perform 2D face recognition and authentication [185]. Geomet-
ric approaches derive facial features and key positions in face im-
ages, then decide on recognition or authentication using this infor-
mation. In contrast, appearance based approaches derive features
directly from the pixel representation of face images without con-
sidering facial features directly. In the past, a considerable amount
of appearance based face recognition and authentication approaches
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(a) (b)

Figure 5: Face image samples from (a) the Yale-B face database and (b) the
Panshot Face Unlock database.

has been discussed (cf. [1, 41, 380, 382]). Important examples include
Eigenfaces [314, 357, 369], based on which further simple yet effec-
tive dimensionality transformation and reduction approaches have
been proposed for face recognition and authentication, such as lin-
ear discriminant analysis (LDA) [204] or Fisherfaces [26, 369]. Fur-
ther approaches additionally employ other models, such NNs [97] or
SVMs [313], or different appearance based feature derivation proce-
dures, such as local binary pattern [346, 369] or wavelet transforma-
tion and related approaches [201].

Mobile face recognition has been demonstrated to be feasible using
different features and models, e.g. yielding about 10-11% HTER [219]
on the MOBIO database [218]. Besides the more widely employed
explicit face authentication also implicit continuous mobile face au-
thentication approaches has been investigated [73, 298]. One notable
advantage of mobile face authentication thereby is that is can be per-
formed without requiring additional or uncommon hardware in mo-
bile devices, as most devices feature cameras of sufficient quality.

3.2.3 Iris

Iris recognition is a strong, non-continuous, and mostly explicit phys-
iological biometrics that distinguishes people using the unique pat-
terns of the human iris [42, 79, 223]. In general, iris recognition pro-
cessing chains including iris detection, segmentation, preprocessing,
feature derivation, and matching of iris images [80]. The main advan-
tage of iris recognition over other biometrics is the distinctiveness of
the underlying biometrics [81, 82]. For example, Daugman [81] esti-
mates the false positive rate to be in between 1

5·1015 and 1
106 depend-

ing on the configuration of the authentication approach, based on
200 billion iris comparisons. To obtain good results, most iris recogni-
tion approaches rely on using near infrared (NIR, around 700-900 nm)
illumination and cameras [80]. The reason is that human eyes con-
tain melanin that blocks visible light. Depending on the amount of
melanin the iris pattern might partially or completely remain hidden
in visible light. However, melanin is transparent in the NIR spectrum
(Fig. 6), which is why iris recognition frequently relies on NIR light
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sources (the NIR part of visible light is usually too weak to allow for
good iris recognition results) and NIR cameras.

(a) (b)

Figure 6: Iris samples recorded using (a) a NIR light source and high quality
NIR camera (adapted from [82]) and (b) visible light and mobile
device cameras (adapted from [221]).

While the iris can be considered one of the strongest biometrics
available in the mobile environment today, its drawbacks come from
a potential for obtrusiveness and additional costs for NIR hardware.
With most iris recognition approaches on mobile devices, users have
to look straight into the camera. This requires additional user atten-
tion and time (mobile iris authentication was measured to be around
1.8 s to 4.2 s in [261]). Further, similar to touch-based fingerprint sen-
sors, most mobile devices are not equipped with NIR light sources
and NIR cameras. Embedding this hardware in mobile devices is as-
sociated with additional costs. Though there exist approaches using
cameras that work in the visible light spectrum and that are shipped
with off-the-shelf mobile devices subsequent iris recognition remains
difficult. Examples include [268] which use a white LED for iris illu-
mination, or [22], which find their approach to work on data from iris
reference databases such as UBRIS [265] or UPOL [90] but to yield
non-optimal results when applied to uncontrolled mobile iris sam-
ples in the visible light spectrum from the MICHE-I database [221].
Another complicating factor with mobile iris recognition in the visi-
ble light spectrum are reflections, e.g. on the eyeball or glasses users
are wearing, which need to be addressed accordingly [261].

3.2.4 Gait

Gait is the way humans walk [244, 352] and can be used for recog-
nizing and distinguishing individuals [364]. Gait biometrics are most
frequently considered a weak, continuous, implicit, and behavioral
biometrics. Gait recognition and authentication [190] can be based on
different types of data, including visually [299] or floor sensed infor-
mation [233] (e.g. humans recorded in context of CCTV surveillance
or sensors being embedded with floors humans walk on, such as pres-
sure sensors) as well as information from sensors worn by humans
themselves [113]. With the latter, different sensor types and sensor po-
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sitions on the human body have been utilized [115]. Mobile devices
like smartphones have become a powerful source of such data as they
feature a number of different sensors and are frequently with peo-
ple while they are walking (e.g. inside a trousers pocket). Especially
accelerometers shipped with mobile phones have been used for ac-
celeration based gait authentication [331]. As human walk is of cyclic
nature, each step can be seen as repetitive cycle (Fig. 7).

Figure 7: Visualization of the cyclic nature of human gait [352].

With acceleration based gait authentication both cycle and window
based approaches have been utilized in literature [144]. With cycle
based approaches individual step cycles are segmented from record-
ings and used for subsequent recognition. Analogously, with window
based approaches, a (possibly fixed length) sliding window is used
on recordings instead to segment data chunks.

The matching procedure of acceleration based gait authentication
often involves dynamic time warping (DTW) as distance metric be-
tween two time series [215, 241, 358]. Regular DTW thereby brings
a memory complexity of at minimum m · n for two time series of
length m and n. For acceleration based gait authentication without
using DTW, various features have been used. Those include: aver-
age, median, min, max, standard deviation (SD), and median abso-
lute deviation (MAD) acceleration of individual axes and their mag-
nitude [190, 254], root mean square (RMS) acceleration [254], mean-
and zero-crossings [254], principal component coefficients of accelera-
tion [39, 321], binned acceleration distribution [113, 190, 254], time be-
tween peaks [190], discrete cosine and fast Fourier transformation co-
efficients [18, 114, 159, 291], and Mel- and Bark-frequency cepstral co-
efficients [144, 254]. Further, wavelet transformations have been used
with non-cycle-based acceleration gait data [144, 267] and floor sen-
sor based gait data [238], as well as on acceleration based gait style
recognition [163], which in contrast to gait identification or authenti-
cation does not distinguish individuals but gait styles. On those fea-
tures, again a number of non-DTW based models have been applied,
including cross-correlation based [216] or tree based models [190],
NNs [190, 303], SVMs [254, 321], analysis of variance (ANOVA) [18],
Gaussian mixture models (GMM) [159], and HMMs [254]. Finally, one
advantage worth mentioning is that acceleration based gait authenti-
cation can be performed with off-the-shell mobile devices contain-
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ing acceleration sensors, without requiring additional or uncommon
hardware [243].

3.2.5 Speaker

Speaker recognition is a continuous behavioral biometrics used both
explicitly and implicitly that recognizes humans by their voice and
has been well researched in past decades [24, 141, 192, 284] (Fig. 8).
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Figure 8: Speech waveform as microphone recorded excess pressure over
time [179].

Speaker recognition can be grouped into being text dependent [191]
or text independent [179]. With text independent approaches users
are recognized independently of which words or text they speak.
On the one hand, users could conceptually be continuously authen-
ticated using voice in everyday situations without using predefined
phrases or being required to read text before authentication. On the
other hand, attackers could possibly easily record a user’s voice and
perform a simple replay attack to trick the authentication. With text
dependent approaches users have to speak a predefined text. This
could e.g. be a phrase known in advance or a text displayed on a
screen. The advantage is that the recognition system knows the text
to be spoken and therefore can compare spoken words with text.
This could be used as an advantage to e.g. incorporate knowledge
based secrets with speaker recognition (requiring users to speak a
shared secret phrase), or to require users to read different phrases
from a screen for different speaker authentication attempts. The latter
would be a means of preventing the simple replay attacks mentioned
above [19]. Notable technical details of speaker recognition include
Mel-frequency cepstrum coefficients (MFCC) as features to charac-
teristically represent speakers [138], and GMMs e.g. with universal
background models (UBM) [52]. The latter are used to first learn both
the target speaker and independent speakers/background voices and
noise, then to compute the likelihoods of the present audio being the
legitimate user speaking or it being background voices/noise. The
resulting probability ratio can then be used to yield a recognition or
authentication decision. Challenges to speaker recognition arise with
little available data for training models, noisy environments, an in-
creased distance between speaker and recording microphone, as well
as unfavorable positioning of the microphone or angle towards the
speaker [99, 234, 251, 271].
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With mobile devices, speaker recognition could be used to contin-
uously authenticate users. This requires few to no user attention (e.g.
while being on the phone) and specifically does not require users
to look at the mobile device screen for authentication. The latter
would also be true with explicit speaker authentication. However, us-
ing challenge based explicit speaker authentication to prevent replay
attacks [19] would increase the corresponding user effort as users
also have to read phrases or know them in advance for authentica-
tion. In terms of applicability mobile speaker recognition has been
shown to be feasible for different approaches (including GMM-UBM
and SVM models), e.g. yielding around 10-11% HTER [219] on the
MOBIO database [218]. It further has been shown that continuous
speaker recognition with low energy requirements is possible using
low power (co)processors in mobile devices [203].

3.2.6 Signature

A less frequently discussed example of mobile biometrics is signa-
ture recognition. Signature recognition is a special case of handwrit-
ing recognition which tries to recognize individuals based on their
handwriting. In contrast, signature recognition only considers signa-
tures of users but is based on the same concepts, often using the
same underlying mechanisms for processing and classifying data.
Signature recognition could thereby be categorized as explicit and
non-continuous behavioral biometrics. For mobile devices, signature
recognition could be interesting as additional biometrics modality for
explicit authentication, e.g. remotely signing contracts with a signa-
ture. For handwriting and signatures both offline and online recog-
nition have been explored [264]. Offline recognition is based only on
the final handwriting or signature (e.g. using a scan). With online
recognition, additional features are available such as timing, speed,
or pressure applied to a digital screen (Fig. 9). Using this information,
different preprocessing, feature derivation, feature selection, and clas-
sification approaches have been explored [59, 308, 343].

On mobile devices, DTW has frequently been employed as sig-
nature matching algorithm [33, 157, 187, 344]. Mobile device signa-
ture capturing capabilities seem limited over dedicated stationary
hardware, which negatively influences signature recognition accura-
cies [157]. Using smaller devices (e.g. phone sized) seems to yield
better signature recognition results than using larger devices (e.g.
tablet sized) [33]. Further, using a pen or stylus yields better signature
recognition accuracies than using a finger on a capacitive display [33,
344] though finger drawn signatures seem harder to attack than pen-
based signatures with zero-effort attacks [344]. If signatures are used
across different devices or different modalities (finger, pen) recogni-
tion results become worse [33]. One notable advantage of signature
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Figure 9: Signatures from the DS2 signature database with personal entropy
ranging from high (a) to low (c) [157].

recognition is that it can be performed on off-the-shelf mobile devices
without requiring additional or uncommon hardware, similar to face
and acceleration based gait authentication.

Summarizing, biometrics can be assumed to be less obtrusive than
knowledge based authentication as they do not bear cognitive load
on users and cannot be forgotten or lost. However, biometrics need
thorough protection from disclosure as they cannot easily be changed
after being disclosed. This protection challenges the design of bio-
metrics matching approaches and might result in decreased perfor-
mances (Sec. 3.3). Many biometrics are applicable in some but not
all authentication situations. For example, face or iris authentication
might not be applicable in all illumination conditions, while voice au-
thentication might not be applicable in noisy environments. However,
the combination of such biometrics can result in robust authentication
where users could choose biometrics best suitable in different authen-
tication situations. Therefore, each biometrics usable on mobile de-
vices represents one option to perform authentication. The more such
options are available, the less obtrusive the overall authentication pro-
cess is. This especially includes biometrics that cause virtually no au-
thentication overhead but are only applicable in few situations (e.g.
gait authentication while walking). Besides biometrics such combina-
tions can also incorporate knowledge or token-based authentication
to provide further options and consequently further reduce the over-
all obtrusiveness.

3.3 protecting biometrics in mobile environments

Biometric authentication uses physiological or behavioral characteris-
tics for authentication. Thereby these characteristics become the au-
thentication secret that should be protected adequately, similar to
secrets with knowledge or token-based authentication [36, 165–167,
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252]. To authenticate, biometrics of the legitimate user have to be
recorded and stored with the authentication system (or authentica-
tion service) at first. For authentication, users record new biometrics
samples which are matched with the stored templates to derive an
authentication decision. The biometric information could thereby be
disclosed to unauthorized third parties on multiple ways [166, 275].
Amongst others these include a) devices storing templates being lost
or stolen. b) devices processing or storing templates being infected
with malware that transmits information to attackers. c) templates
being derived from public information or deliberately recorded by at-
tackers. d) authentication services (e.g. centralized databases) being
accessed by third parties, thereby biometric templates stored there
potentially falling into the hands of attackers. On mobile devices, bio-
metric templates could be extracted from the recording at sensors to
the storage and matching procedure [275], depending on the capabil-
ities and access rights of attackers. In contrast to knowledge or token-
based secrets, biometric templates have more severe consequences if
they are disclosed. While knowledge and token-based authentication
secrets could easily be changed (e.g. remembering a new secret or
acquiring a new token), biometrics cannot easily be changed. Con-
sequently, biometrics disclosed once might need to be considered
compromised forever. This makes biometric templates a potentially
high value target for attackers and bears additional risks for user re-
lying on biometric authentication [165, 166]. However, using obtained
biometric templates for authentication is more difficult for attackers
than using e.g. an obtained knowledge based secret. After obtaining
biometric templates, a reconstruction of the biometrics has to be cre-
ated which can be presented to the sensor for authentication. This
reconstruction increases the effort of attacks, thereby makes attacks
more difficult. Still, attacks using reconstruction of biometrics from
templates have been demonstrated for different biometrics. Examples
include the reconstruction of fingerprints from stored minutiaes [53,
55, 292], irises from iris codes [353], or faces from Eigenvalues using
hill climbing attacks [5]. Mobile devices being more easily lost, stolen,
or accessed by third parties while unattended by the owner than clas-
sic computers further emphasizes the need to protect biometrics used
for authentication on mobile devices.

3.3.1 Biometrics and Classic Cryptography

Neither classic cryptographic en- and decryption nor classic crypto-
graphic hashes are sufficient to protect biometrics due to the avalanche
effect. With the avalanche effect, a bit flip in clear text data ideally
leads to 50% flipped bits in the resulting ciphertext or hash [341]. Bio-
metric templates of the same user differ slightly for different readings
by design. The ciphertexts and hashes of such slightly different sam-
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ples are completely different due to the avalanche effect. Therefore,
even with multiple biometric templates of the same user being similar
to each other, their ciphertexts and hashes are intentionally unrelated
to each other. This makes comparison or matching of ciphertexts and
hashes of biometric templates for authentication infeasible. When us-
ing encryption, templates could be decrypted to be matched with
new samples. This needs to be done each time an authentication at-
tempt is made. Therefore, if attackers obtain control over a mobile
device they could access unencrypted templates each time an authen-
tication attempt is made. Further, the decryption secret could fall into
the hands of attackers which would enable them to also decrypt tem-
plates obtained long ago. Using en- and decryption of biometric tem-
plates therefore does not solve the problem of protecting biometrics
but only changes the goal to protecting the decryption secret instead.
This is why biometrics can be protected using either the algorithmic
approach of biometrics template protection or secure hardware such
as smart cards (SC).

3.3.2 Protecting Biometrics with Biometric Template Protection

Biometric template protection is an algorithmic approach (not using
secure hardware) towards protecting biometrics from disclosure. Bio-
metric template protection can be categorized in biometric cryptosys-
tems and cancelable biometrics. Both approaches have in common
that they never store biometric templates or features derived from
them in their original form to avoid them being disclosed. We give
a brief overview of both categories in this section. For a more com-
prehensive review we refer to the surveys and books on biometric
template protection, including Breebart et al. [43], Cavoukian and
Stoianov [57], Jain et al. [165, 166], Ngo et al. [252], Patel et al. [263],
Rathgeb et al. [280, 281], and Uludag et al. [348, 349].

3.3.2.1 Biometric Cryptosystems

Biometric cryptosystems combine biometrics with cryptographic keys.
They can be categorized in either key-binding or key-deriving biomet-
ric cryptosystems [57, 166, 281]. Key-binding biometric cryptosystems
at first bind a cryptographic key K with biometric samples Sa to cre-
ate helper data H. New biometric samples Sb that are sufficiently
close to Sa can in combination with H be used to release K. In con-
trast, key-generating biometric cryptosystems derive helper data H

directly from Sa, from which a cryptographic key K can further be
derived. H can be discarded after deriving K or it can be stored to as-
sist when deriving K from Sb. Both forms of biometric cryptosystems
have in common that H is (potentially) stored – instead of storing
biometric templates themselves. In order to protect users’ biometrics,
as a consequence H must not enable attackers to derive the origi-
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nal biometrics in case it is disclosed. One drawback with biometric
cryptosystems comes from the limitation of entropy of K from the
underlying distribution of biometric samples. It has been shown that
for K to be random, its maximum length LK is bounded by the false
positive rate (FPR) of the biometrics resulting from zero-effort attacks,
which needs to be seen as significant drawback for authentication or
cryptographic purposes (Eq. 4) [47, 49, 281].

LK 6 − log2(FPR) (4)

Well known examples of key-binding biometric cryptosystems in-
clude the Fuzzy Commitment Scheme [174] and Fuzzy Vault [173].
With the first, error correcting functionality is used to enable any
Sb sufficiently close to Sa to release K. The latter extends this con-
cept by using polynomial reconstruction for releasing K from H and
Sb. Both approaches have been applied to different biometrics in the
past (cf.[154, 160, 175, 208, 232, 246, 249, 250, 278] and [110, 176, 197,
232, 247, 330, 371, 374]). Well known examples for key-generating bio-
metric cryptosystems include fuzzy extractors (e.g. [47, 92, 93]) and
secure sketches (e.g. [327, 328]). With the help of H both extract infor-
mation from Sa and Sb instead of binding K into H. Fuzzy extractors
thereby reliably extract K from both Sa and Sb. H assists in the recon-
struction/correction of errors in K resulting from the difference be-
tween Sa and Sb. In contrast, with secure sketches the exact original
sample Sa is used as basis for K (e.g. using cryptographic hashing).
H thereby assists in the reconstruction of Sa from Sb. Again, both
fuzzy extractors and secure sketches have been applied to different
biometrics in the past (cf. [12, 14, 46, 48, 327, 328, 345, 372]).

3.3.2.2 Cancelable Biometric Templates

In contrast to biometrics cryptosystems, cancelable biometrics do not
bind or derive a cryptographic key from biometric samples. Instead,
they transform biometric samples before storing them so that they
can still be compared/matched in the transformed domain, but also
so that it is hard for attackers to derive the original samples from
the transformed templates [166, 167, 263, 281]. Cancelable biomet-
rics can be categorized in either non-invertible transformations or
biometric salting. With the first, biometric templates are transformed
using a non-invertible transformation to obtain secure templates. In
contrast, biometric salting utilizes transformations that are concep-
tually invertible (this focuses on the transformation itself and does
not imply that deriving the original biometric template from the se-
cure template is necessarily feasible [281]). On the one hand, in or-
der to protect biometrics with biometric salting the used transforma-
tion parameters must be kept secret, which needs to be considered
as significant drawback over non-invertible transformations. On the
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other hand, non-invertible transformations show noticeable perfor-
mance degradations (both decreased accuracies and increased com-
putational requirements) over biometric salting and regular biometric
systems [281].

Important examples of non-invertible transformations include the
original proposal by Ratha et al. [272] which use image-based block
permutations and surface-folding in order to obtain revocable bio-
metric templates. Further examples include the application on sig-
nature biometrics by Maiorana et al. [209–211] and the alignment
free approach on iris biometrics by Rathgeb et al. [277, 279]. Non-
invertible transformations have further been applied to different bio-
metrics (cf. [193, 212, 383]). Biometric salting too has been applied to
different biometrics (cf. [235, 259, 335, 359, 383]). Notable examples
include BioHashing [121] which can be used in two factor authentica-
tion manner.

3.3.3 Protecting Biometrics using Secure Hardware

The second option to protect biometrics on mobile devices besides
biometrics template protection is using secure hardware to process
and store biometric information. This option seems to have received
less attention in literature in the past and is the option used with
mobile biometric authentication in our approach (Cha. 5).

3.3.3.1 Smart Cards

Smart cards (SC) [269] are special integrated circuits which provide
certain characteristics that are useful for security sensitive applica-
tions: a) cryptographic operations (e.g. encryption, decryption, hash-
ing) can be performed directly on the chip, often in hardware. b) SCs
are intentionally kept small and less complex to make unintended
behavior/bugs in the system less likely. That is, it is easier to verify
that there are no major security flaws. c) data and application code in
the memory is protected against unauthorized access and tampering.
A serial interface, which is controlled by the operating system of the
hardware, is the only way to access this data.

However, besides those advantageous characteristics, SCs also bring
limitations that need to be considered for applications relying on
them: a) data transfer to/from SCs being restricted in bandwidth (cf.
Hölzl et al. [156] with measurements of 329 B/s for contactless and
3,31 kB/s for contact cards). b) while some modern SCs already use a
32 bit architecture, many currently deployed cards are still based on
a 16 bit architectures. That is, there are no 4 byte integers and inte-
ger calculations in hardware on those cards. c) persistent and volatile
memory are highly limited with a maximum capacity of around 1 MB
for current cards. d) finally, SCs are limited in computation capabili-
ties: for example, there are no native floating point operations avail-
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able in hardware. Computations performed in software are consider-
ably slower than on PCs or mobile devices due to clock rate of SCs
usually being in the MHz range.

With biometric authentication these computation and data transfer
limitations affect both the internal structure of authentication models
and number and type of features that can be used with SCs. For ex-
ample, using 4 byte integers in a 16 bit environment requires more
complex data structures in internal computations (i.e. operations on
arrays for simple multiplications). Hence, using small value ranges
for both model representation and features transferred to the SC are
preferred. Further, transmission bandwidth to/from the SC is limited,
which limits the amount of data that can reasonably be sent to the SC
during user authentication.

3.3.3.2 Biometrics with Mobile Devices and Smart Cards

Smart cards (SC) are frequently shipped in off-the-shelf mobile de-
vices in the form of secure elements (SEs). These can either be di-
rectly embedded in the phone hardware, extended with an SD card,
or provided within modern SIM cards [156]. With biometrics on SCs,
the storage and matching part can either be achieved with template-
on-card (TOC) or match-on-card (MOC) techniques (cf. [32, 44, 75,
166, 167]). With TOC, biometric templates of the user are recorded
by sensors of the mobile device and stored on the smart card during
enrollment. During authentication the enrolled templates are fetched
from the SC and compared with new recordings outside the SC. In
contrast, with MOC authentication, new recordings are transfered to
the SC and compared with previously stored templates directly on
the SC.

This leads to the following noticeable differences of MOC over
TOC: on the one hand, after a user’s biometric templates have been
stored on the SC during enrollment, they never leave the SC. Hence,
MOC reduces the possibilities for leakage or theft of biometric tem-
plates over TOC. On the other hand, comparing users’ biometric tem-
plates with new biometric recordings on the SC is subject to hardware
limitations of the SC, namely transfer bandwidth to and computa-
tional limitations on the SC. Hence, the portion of data that can be
transfered to the SC and the computations that can be done on the
SC have to be selected carefully. As reducing the risk of leakage or
theft of biometric templates is important, MOC is regularly preferred
over TOC, despite the accompanying computational limitations. In
turn, these limitations lead to restrictions in how existing MOC ap-
proaches are frequently designed (cf. [32, 66, 125, 166, 167, 260]):

• MOC approaches usually rely on restricted operations and logic
for matching templates with new recordings. Hence, they of-
ten do not utilize regular, offline trained machine learning (ML)
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models. Further, they are frequently restricted to a small set of –
sometimes handpicked – features to be used in the matching
process. Both necessarily limit the MOC discriminative power.

• To reduce computational requirements, most MOC operations
are very domain specific. The underlying mechanisms are usu-
ally strongly adapted to the used biometrics. This impedes the
adaption of new biometrics in MOC approaches, where it would
be beneficial to have reusable concepts for feature derivation,
model representation, and matching operations.

3.3.3.3 Previous Work Using Match-on-Card Authentication

To this date, fingerprints are the best researched biometrics with MOC
authentication approaches. They usually utilize small templates and
a small amount of features (mostly minutiae based), which in turn
lead to relatively simple matching procedures (cf. [32, 120, 129, 260]).
MOC authentication with biometrics other than fingerprints has been
covered by little research. Examples include Choi et al. [66], who use
SVMs with a limited amount of features and FPGAs for speaker ver-
ification in a MOC manner. Czajka et al. [75] perform iris recogni-
tion by deriving a 1024 bit iris code from samples outside the SC,
then match new recordings with enrolled templates on the card us-
ing a computationally lightweight Hamming distance. This approach
is therefore more similar to fingerprint than e.g. face authentication in
terms of template size. Another authentication related example is hu-
man identification from CCTV records [236]. Although the approach
is conceptually similar to gait authentication from visual data (includ-
ing the matching based on simple distance metrics), the processing
chain, including used features such as cloth color and human height,
represent a major difference. To the best of our knowledge there ex-
ist no approaches to acceleration based gait MOC authentication yet.
With the majority of the described approaches (Sec. 3.2.4), either re-
training the model for individual users would be required, or neither
training the model, nor using a ready trained model to predict new
samples is feasible on SCs with respect to their computation require-
ments. Still, similar feature derivation mechanisms can be utilized in
MOC approaches as long as they are computed outside the SC.

Similarly, the computation of most described face recognition and
authentication approaches (Sec. 3.2.2) would be infeasible with SCs
and MOC approaches. Research towards face authentication with
SCs mostly relies on using limited matching on the SC. For example,
Tistarelli et al. [342] propose a face authentication TOC approach in
which they use morphological filtering and adaptive template match-
ing to extract the position of relevant facial features for matching. Dur-
ing matching they fetch enrolled templates from the card and com-
pare them to new recordings using a space-variant approach based
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on principal component analysis (PCA). Lee and Bun [195] combine
PCA projection weights, average intensity and edge values as fea-
tures with genetic algorithms (GA) for feature selection. They thereby
largely reduce the amount of features, which enables the usage of an
SVM model for authentication. Kittler et al. [181] state that PCA com-
presses templates in a suboptimal way for usage on SC. They there-
fore propose a MOC approach using a 1D, client specific LDA, of
which they utilize the distance of new recordings to both the stored
client template and to the average impostor to derive a scalar distance
measure. As tradeoff between computational requirements and au-
thentication performance, Bourlai et al. [38] utilize the client specific
LDA proposed in [181] as feature derivation mechanism, then use the
vector dot product of a new recording and the enrolled template with
a predefined threshold to obtain an authentication decision.

Summarizing, mobile biometrics could be protected using either al-
gorithmic biometric template protection or secure hardware to store
and process biometrics. The main advantage of biometric template
protection is that no specialized hardware is required to be embed-
ded or shipped with mobile devices. In terms of drawbacks, biomet-
ric template protection has shown performance degradations (in both
decreased matching accuracies and increased computational require-
ments) over regular biometrics systems [281]. Further, both authen-
tication as well as the protection of biometrics rely on the proper-
ties of the underlying algorithmic approach. In combination with the
natural distribution of biometric samples this can lead to reduced
entropy [47, 49, 183, 281], which could make attacks on the authenti-
cation system or deriving the original biometrics from protected sam-
ples easier for attackers. In contrast, secure hardware like SCs relies
on the hardware being secure and difficult to tamper with to protect
biometric templates. In terms of advantages, using SCs does not rely
on algorithmic properties to protect biometrics. On the one hand it
thereby does not imply computational overhead or degradation in
matching accuracies caused by such properties. On the other hand
the limited processing and storage capabilities of SCs are a challenge
to designing suitable and well performing biometric authentication
procedures. Further, SCs need to be embedded/shipped with mobile
devices in order to be able to protect mobile biometrics. As some
modern mobile devices as well as modern SIM cards start containing
SCs this can be assumed to only be a small drawback.

3.4 token-based authentication

Token-based authentication is the third major way of authentication
besides using knowledge and biometrics. With tokens, authentication
is performed using “something users possess”. Thereby the token is a
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physical object in possession of legitimate users that either performs
authentication or aids users in doing so, like a key to a physical lock.

3.4.1 Functional Principle

Authentication tokens come in different forms, mostly holding a se-
cure storage containing an authentication secret. Well known exam-
ples include ATM cards, where the embedded chip contains the au-
thentication secret, or devices for generating one time passwords
(OTP), e.g. using a token device like YubiKey2. The latter thereby usu-
ally utilize one of two approaches for OTP generation: either being
time synchronous, changing secret synchronous with a master [361],
or using a challenge-response approach [256, 315].

From an authentication perspective, tokens provide a number of
advantages and drawbacks over knowledge and biometrics based au-
thentication. Similar to biometrics, tokens do not bear cognitive load
on users for remembering the authentication secret. This is because
the secret is held by the token itself. Instead, the cognitive load im-
posed on users is to bring the token for authentication. If the token
is forgotten or not available, authentication becomes impossible. As
tokens are better suited than human memory to store complex se-
crets and because tokens with embedded cryptographic hardware are
better at performing cryptographic operations, token authentication
typically features better security in terms of cryptographic strength.
Consequently, the computational security with token-based authen-
tication is usually quantified as cryptographic entropy (e.g. using a
256 bit key with an AES cipher [315, 341]), in comparison to limited
entropy when using user chosen passwords [256]. As a result, token-
based authentication is usually harder to guess using brute force at-
tacks. Further, tokens often bear some physical attack resistance using
special hardware that is difficult to tamper with and/or disables itself
if tampering is detected [36, 256].

In terms of drawbacks, if a token is lost or stolen by attackers it
is more difficult to replace than a knowledge based secret, but still
easier than exchanging disclosed biometrics. Further, the acquisition
of token hardware (including both the token device and the device
reading the token) is usually associated with costs. Exceptions in-
clude when for example users already own all necessary hardware
(e.g. the functionality required for reading the token being embedded
with standard computers and the token device being e.g. an already
owned smart watch). This also leads to additional costs each time a
token needs to be renewed, e.g. after loss. Different token-based au-
thentication systems further complicate this matter. There exist many
different commercial token-based authentication systems. This might

2 Yubico online presence for YubiKeys: https://www.yubico.com/products/

yubikey-hardware/.

https://www.yubico.com/products/yubikey-hardware/
https://www.yubico.com/products/yubikey-hardware/
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require users using tokens for different authentications to buy and
carry multiple tokens, leading to increased physical and financial ef-
fort [256]. In terms of obtrusiveness with daily usage of authentica-
tion tokens, drawbacks are twofold: a) tokens need to be taken along
which can cause additional effort and bear cognitive load on users to
not forget them. This drawback can be relaxed by combining the to-
ken with something that is taken along anyway (for example keyrings,
watches, or rings). b) performing token-based authentication usually
takes some time. For example, when users want to use a YubiKey to-
ken to perform authentication (that is not stationary connected to a
computer) they at first need to locate/grab the token and connect it
to the device before they can authenticate.

From an attacker’s perspective, in contrast to knowledge or biomet-
rics based authentication, tokens can be physically lost or stolen. This
is especially important for mobile devices: if both the device and the
corresponding authentication token are with the user both could be
obtained by attackers at the same time (e.g. theft of the mobile phone
and the keyring holding the authentication token). This would allow
attackers to authenticate to the mobile device. Because of tokens be-
ing portable, many token-based authentication approaches add an
additional layer of security to the token itself. Such could be done
by requiring the user to authenticate to the token using a knowledge
or biometrics based authentication [256]. This makes the subsequent
authentication using the unlocked token a two-factor authentication
with all corresponding benefits in security and drawbacks in usabil-
ity [315].

3.4.2 Previous Work Using Token-Based Authentication

With a focus on mobile environments there exist two major ways of
token-based authentication: using a wearable or mobile device based
token to authenticate to classic computers, stationary terminals, or
similar (from now on referred to as “computers” only) and using
a token to authenticate to mobile devices themselves, with the first
having received more research attention in the past than the latter.

Most approaches using mobile or wearable tokens to authenticate
to computers are based on wireless communication between token
and computer using e.g. near field communication (NFC), radio fre-
quency identification (RFID), IEEE 802.11 (WiFi), or Bluetooth (BT) [71,
133, 177, 257, 322, 336]. Thereby, different ways of protecting comput-
ers with tokens have been explored. In [71] a wearable authentica-
tion token is used to communicate with computers over short range
wireless communication. They perform file en- and decryption on the
computer using a secret from the token (files are encrypted when user
leaves and decryption when user returns). Two tokens are combined
for authentication in [177]. One token is used to unlock the second
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token based on proximity (e.g. wireless signals). The second token
is only operable when unlocked with the first token and is responsi-
ble for performing the authentication itself. A wristband is used as
authentication token in [257]. The wristband needs to be unlocked
using fingerprint authentication before being usable. The wristband
further checks for vital signs of its wearer to increase theft resistance
(it could e.g. lock when detached). With PICO [322] a token with a
“main” and a “pairing” button, a display, a camera, and a NFC in-
terface is used. The token communicates to computers using NFC
for both pairing (by pressing the “pairing” button) and authentica-
tion (by pressing the “main” button). In related approaches off-the-
shelf mobile devices are employed as authentication tokens using a
wireless connections to communicate with computers, e.g. by using
BT [133, 336]. The main advantage of using regular mobile devices as
token is that users do not need an additional device for authentication
that they need to bring along or that could be lost or stolen.

The mentioned approaches – using or not using off-the-shelf mo-
bile devices – bear a common drawback. Their security does not
only rely on cryptographic communication security for communicat-
ing information between a paired token and the corresponding com-
puter, or a physically secure token that does not fall into hands of
attackers. Their security is also proximity based, that is authentica-
tion is only supposed to work when token and computer are within a
certain range of each other. Consequently, authentication is possible
within the corresponding range of NFC, RFID, or WiFi communica-
tion. Some previous research points out that the range of the used
short range wireless communication is limited by design (e.g. from a
few centimeters to a few meters) [253, 322]. Though this can be consid-
ered an advantage over not requiring authentication at all, attackers
could amplify or forward received signals, or use bigger antennas
and transceivers to extend the distance in which authentication work,
resulting in man-in-the-middle attacks [196, 290]. Attackers could
also obtain unauthorized access to devices as long as the token is
within authentication range. An example would be attackers access-
ing a computer with the legitimate user having turned their back to
them and the computer being unlocked by the token carried by the
user. Such attacks have been demonstrated e.g. by Lee et al. [196] who
conclude that authentication using wireless signals needs to be con-
sidered vulnerable to these attacks. They propose to use ultrasound
instead of NFC, RFID, or WiFi to communicate between token and
computer, as ultrasound is more difficult to relay or cancel by attack-
ers.

Another approach that by design does not rely on wireless com-
munication distance is using vibrations to communicate information.
This has been demonstrated in two-factor authentication with a mo-
bile device and an RFID token, where the mobile device is used to
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unlock the token that can then be used for further purposes [302]. Un-
locking the RFID token thereby is done by pressing the token against
the mobile device, thereby sending and receiving information over de-
vice vibrations. Another example would be to require users to read
an authentication secret (possibly OTP) from the token and to enter
it on the computer. This has been demonstrated e.g. by an online
authentication service sending an authentication code to the mobile
device using SMS over the GSM network, which the user enters on
the computer to perform authentication [332].

In contrast to classic computers, mobile devices have rarely been ad-
dressed as the device to be authenticated to using tokens. Approaches
doing this mostly rely on the same underlying mechanisms as the
previously mentioned approaches. For example, wearable tokens to
authenticate to mobile devices are used in [60, 74, 108, 119, 128, 253,
325]. Some approaches allow authentication when wireless communi-
cation is possible between token and mobile device based on NFC [60,
108] or combine NFC with the requirement of matching locations (e.g.
via GPS receivers, which requires both mobile device and token to
have sensors to independently determine their location) [119]. Other
approaches allow authentication to mobile devices when the token
is within BT communication range [186] or rely on proximity with
wireless signal without explicitly specifying the wireless technology
to be used [74, 253]. One approach using different communication
channels but still relying on that communication being restricted to
certain proximity is done in [35]. They propose two approaches: to
use the magnetometer of the mobile device to sense a code of changes
in the magnetic field caused by the token. Or to use the microphone
of the mobile device to sense a acoustic transmission from the token.
Both approaches again rely on the communication channel being re-
stricted to certain proximity and could be extended by attackers with
amplification or relays.

Interesting token choices have been made by Nicholson et al. [253],
which were amongst the first to explicitly target (IBM Linux) wrist-
watches as tokens to automatically lock mobile devices when users
depart. The advantages of using such a wristwatch as token are three-
fold – without the authors explicitly mentioning all of them: a) users
already wearing a wristwatch are not required to think about car-
rying an additional token. b) it is less likely for wristwatches that
are worn throughout a day to be lost or stolen, compared to tokens
which might be unattended for certain times a day. c) wristwatches
with computer functionality bring processing capabilities and inter-
faces required to perform token-based authentication to mobile de-
vices. In case users already own such a wristwatch there would be no
additional costs for acquisition of a token device. In a similar manner,
Grosse and Upadhyay [128] mention a ring with NFC capabilities to
authenticate to (mobile) devices. Similar to using a wristwatch as to-
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ken this approach does not bear additional effort on users already
wearing a ring, as they do not need to think about or carry an ad-
ditional token device. Further, if the mobile device for usage is held
with the hand wearing the ring, authentication effort would be small
(only adjusting the grip of the device so that the NFC ring an NFC
transponder of the device are close enough to perform authentica-
tion). The drawbacks of this approach are – besides authentication re-
lying on the communication being possible only within certain prox-
imity of mobile device and token – that rings with NFC functionality
are unusual, thereby acquisition of the token is certainly connected to
costs.

Summarizing, most token-based authentication approaches in the
mobile environment share the majority of advantages and disadvan-
tages. On the one hand, tokens are resistant to users choosing weak se-
crets, which would be the case with knowledge based authentication
approaches, and they do not bear cognitive load on users to remem-
ber a secret. On the other hand, token acquisition might be connected
to costs, tokens can be forgot, lost, or stolen. Consequently, they bear
additional effort on users to carry the token along. Further, different
token-based authentication systems might require users to remember
and carry along multiple tokens. If tokens are lost or stolen, revoca-
tion is again connected to certain cost. Finally, tokens likely require
extra time for performing authentication, e.g. by locating the token
and presenting it to the mobile device to authenticate to. From an at-
tacker’s perspective token-based mobile device authentication could
open up additional attack surfaces. These include the majority of ap-
proaches that rely on communication over wireless signals between
token and device only being functional within a certain proximity.
This assumption enables attackers to access the mobile device within
this proximity (e.g. behind the user’s back) or to extend the range of
the signal to access it in a bigger distance. Other drawbacks include at-
tackers being able to obtain the mobile device and the corresponding
mobile token at the same time. This would enable attackers to easily
perform authentication. Depending on how users secure their tokens
this could be easier than shoulder surfing knowledge based secrets or
capturing and spoofing the input to biometric based authentication.

Hence, though using tokens to authenticate to mobile devices has
only been investigated by few previous research, there seem to be
ways to unobtrusively use tokens in the mobile environment in the
future. Many previous approaches accepted additional security issues
for being unobtrusive, such as relying on wireless communication be-
tween token and mobile device only being functional in certain prox-
imity. From this we conclude that there is room for new or additional
ways of unobtrusive token-based user authentication to devices in the
mobile domain.
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3.5 unobtrusive mixed multi-modal mobile authentica-
tion

Authentication approaches can be combined to achieve improved au-
thentication performance, either in the form of higher authentication
security or as reduced obtrusiveness. The first includes e.g. multi-
factor authentication where all factors need to be satisfied through
successful authentication. For example, multi-factor authentication
could combine two factors by using tokens with passwords, e.g. re-
quiring users to present a token and enter a password, or to unlock a
token using a password before it can be used to perform authentica-
tion [256]. Therefore, multi-factor authentication requires attackers to
be in control or having obtained all factors, thereby leading to higher
effort and costs to successfully perform attacks. However, multi-factor
authentication also tends to cause increased authentication effort, as
legitimate users are as well required to perform all individual authen-
tication steps.

With the latter, combinations of authentication approaches can lead
to reduced overall obtrusiveness for legitimate users [88]. While over-
all all types of authentication (knowledge, biometrics, tokens) could
be combined, many approaches are designed to combine different
biometrics. The main difference to multi-factor authentication is that
usually not all authentication steps are required for successful authen-
tication, but users could at any time choose the authentication they
want to use, or systems could authenticate users implicitly depending
on combinations of their actions, behavior, or alike. Therefore, usually
a certain level of confidence that a legitimate user is trying to interact
or is interacting with a device is required for successful authentica-
tion. Further, similarly to multi-factor authentication, including mul-
tiple modalities can also lead to better authentication results in terms
of correct acceptance and rejection [10, 262].

Combining different authentication results often relies on fusion
mechanisms. This can be achieved by fusion of original data or fea-
tures (e.g. using multiple biometric modalities), authentication scores
(applicable to all authentication approaches that yield a score), or au-
thentication decisions [168, 293]. Different combinations of authenti-
cation approaches to achieve unobtrusive mobile authentication have
been proposed in previous research. We subsequently discuss some
interesting examples than use novel authentication aspects. One ap-
proach performs authentication during answering a call by sensing
the device movement [10] or additionally by integrating the dynamics
of how the slide swipe-to-unlock on the mobile device is performed,
the arm movement to the ear, and voice recognition during the first
2.5 s of the call [51]. A related approach integrates users’ micro hand
movements of the first 10 s of device usage after unlocking a mobile
device into explicit or implicit continuous mobile authentication [50].
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Other examples integrate behavioral profiling, such as application us-
age [199] and device location history [10, 206, 207] and proximity
to other devices/location fingerprinting. Face and touch modalities
are combined in [316], while combinations of different keystroke dy-
namic approaches (during login and continuously during subsequent
device usage) are combined in [100]. Another approach incorporating
typing analysis combines text entered via the virtual keyboard with
application usage profiles, visits of website, and physical location of
the device (using GPS and/or WiFi) [111, 127]. In order to achieve
unobtrusiveness such approaches often employ continuous authenti-
cation – which most frequently based on continuous biometrics [10,
262]. These approaches are frequently used in post-unlock manner,
that is, after users performed regular authentication to unlock the de-
vice. Then unobtrusive authentication is used to further continuously
authenticate users during subsequent device usage. Though inves-
tigating and integrating additional ways of continuous post-unlock
authenticating is one important aspect for achieving overall unobtru-
sive mobile device authentication [9, 10], the initial authentication for
unlocking a mobile device should be unobtrusive as well. This aspect
has received less attention in previous research.

To enable generic combination of diverse authentication approaches
different frameworks have been proposed and implemented. One ex-
emplary and recent example would be CORMORANT [148, 152, 153],
the Android framework for continuous, risk-aware multi-modal cross-
device authentication. CORMORANT focuses on combining different
authentication approaches across different mobile devices of the same
users in a generic way. Further, current work with CORMORANT in-
vestigates the integration of the risk of mobile devices being physi-
cally accessed by third parties within their current context into the
authentication decision3. For example, the likelihood of such access
might be higher in public transportation than at home. Frameworks
like CORMORANT aid development and integration of new authenti-
cation approaches by providing the surrounding framework that pur-
posefully uses results and decisions of the underlying approaches.
Therefore the development of a new authentication approach could
focus on the approach itself, while the framework could take care of
using and fusion of different authentication approaches and yielding
an appropriate authentication decision on mobile devices.

Besides combining diverse authentication approaches to obtain un-
obtrusiveness, another important aspect is when to query users to
perform explicit and thereby obtrusive authentication [9, 10, 88]. Ap-
proaches to this challenge often integrate implicit and/or continuous
authentication to determine a suitable point in time for explicit au-
thentication. Examples include a reduction of obtrusive authentica-

3 The implementation of CORMORANT is currently ongoing with its source code
being publicly available at https://github.com/mobilesec/cormorant.

https://github.com/mobilesec/cormorant


52 approaches to improve mobile authentication

tion to about 42% while obtaining 3.3%-16.1% false acceptance rate
from the underlying implicit authentication [286]. This is achieved
by combining multiple authentication approaches, including biomet-
rics (face and voice), user behavior (changes in user behavior such
as derived from different times and location of device usage), and
token-based authentication (proximity to possessed nearby objects
with BT/RFID signal strength). Another example uses text based con-
tinuous authentication to determine when explicit authentication is
required [296]. They thereby combine linguistic text analysis, keystroke
dynamics, and behavioral profiling.

Summarizing, with mobile authentication frameworks such as COR-
MORANT diverse authentication approaches can purposefully be com-
bined and integrated on mobile device. Integration of diverse au-
thentication approaches can thereby lead to robust authentication
results (even when incorporating weak authentication approaches)
while also leading to decreased overall obtrusiveness [10, 88, 262].
In this regard one aspect that remains open is the exploration and
investigation of further novel approaches for unobtrusive mobile au-
thentication. Thereby most previous work focuses on biometrics or
behavioral aspects (e.g. profiling) while few approaches incorporate
e.g. tokens into unobtrusive multi-modal mobile authentication. Fur-
thermore, many approaches that rely on unobtrusive biometrics em-
ploy them in post-unlock manner, such as with continuous face au-
thentication during device usage. This leads to the initial unlock po-
tentially remaining obtrusive. Mobile authentication would thereby
benefit from further unobtrusive biometric authentication approaches
that can be utilized for an initial unlock. The employability of such
approaches might be restricted to certain situations (such as gait au-
thentication being restricted to users walking). Consequently, mobile
authentication would again benefit from a diversity of approaches
being available to perform authentication in different situations.

3.6 device-to-user authentication

User authentication with mobile devices usually assumes that authen-
tication is done from users to their devices, e.g. to prevent unautho-
rized physical access to those devices. This form of authentication can
be referred to as user-to-device authentication – but it is usually just
referred to as user authentication due to it covering most of mobile
device authentication involving users in literature. However, besides
user-to-device authentication devices could also authenticate to their
users with so called device-to-user (D2U) authentication. Little pre-
vious research addresses this form of authentication due to which it
is practically unemployed on current mobile devices. This allows for
hardware phishing attacks to be performed with most current mobile
devices, which we discuss in the next section.
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3.6.1 Hardware Phishing Attacks

When users start interacting with their mobile devices they implicitly
assume the device they interact with to be the correct one. However,
as devices usually do not authenticate to their users – in contrast to
users authenticating to their mobile devices – it could also be an iden-
tically looking but different mobile device they are interacting with.
This deception allows for what we refer to as hardware phishing at-
tacks. At first attackers obtain an identically looking mobile device.
They prepare it so that the same user-to-device authentication screen
is shown. This screen is further prepared to relay every interaction
with the phone to the attackers. This mobile device thereby becomes
the phishing hardware, being an identically looking but malicious
device that aims to deceive users into unwittingly revealing secret
information to the wrong device. The attackers then exchange the
user’s mobile device with the phishing hardware while the user is
inattentive. Subsequently, when users try to use their mobile device
they at first authenticate – thereby revealing the authentication secret
to the phishing hardware. The information is relayed to the attack-
ers who can use it to authenticate to the device previously obtained
from the user and unlock it. The reason why we refer to these attacks
as hardware phishing attacks and to the devices simply as phishing
hardware is that these work by deceiving users in the same manner
as e.g. web-site based phishing attacks.

As with all phishing attacks – including mobile hardware phishing
attacks – the malicious instance just needs to mock the real instance
until authentication credentials have been revealed. It is already too
late if users recognize moments later that they are interacting with
a wrong device – especially, if the real device is already out of their
reach. In contrast to web-based phishing, after users recognize a hard-
ware phishing attack is ongoing, the legitimate device is (and most
likely stays) under control of attackers. Therefore, while hardware
phishing attacks have a higher initial cost than their web-based coun-
terparts (as new hardware is most certainly required for each attack),
the cost is not lost during the attack. Attackers could reuse or sell the
acquired device after an successful attack and thorough analysis of
data on the device. Although the initial cost might affect the cost-to-
gain ratio to be too high for some targets, for other targets hardware
phishing attacks would certainly still be profitable – e.g. for obtaining
business or industry intelligence. Additional issues are that a) virtu-
ally all mobile device models are strongly standardized (including
possible customizations in software and look-and-feel), and identi-
cal copies of all these models can be easily obtained by attackers. b)
hardware phishing attacks cause devices to be swapped – hence for
attackers there is no loss in terms of hardware. and c) individual/per-
sonal customization (e.g. screen wall paper, sounds, even hardware
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customizations as stickers on the device) could as well be duplicated
easily by attackers for the mock device. Obtaining information about
the target device and its features for creating phishing hardware can
be done by attackers without physical access to the device, e.g. by
inconspicuously taking pictures of the phone (e.g. while it is lying on
a table).

Mobile devices authenticating to their users (as users do to mo-
bile devices) would be an effective measure against such attacks. This
could be done e.g. by revealing a shared secret to users, so that they
are assured that the device is in fact the correct one.

3.6.2 Previous Approaches to Device-to-User Authentication

Little previous research has focused on D2U authentication. One ap-
proach to D2U authentication is by devices visually revealing secret
information to users to ensure they can be trusted. An example for
this are web-based banking systems where after logging in users are
presented a previously defined secret to ensure authenticity of the
service they are interacting with. Another example is displaying vari-
ations of secret images to the user to assure authenticity of user inter-
faces and computer systems [288, 289]. The main drawback of such
approaches is being prone to shoulder surfing attacks (an attacker
visually observing secret information revealed to the user by the de-
vice – without requiring physical access to the device).

Other related approaches deal with human verifiable authentica-
tion when pairing devices (e.g. Bluetooth pairing in general [145])
or pairing of devices with restricted in- and output capabilities (e.g.
pressing a button on device A in the same pattern a LED blinks on
device B [202] or shaking devices together [224]). In contrast to these
mechanisms which are intended to be employed once during device
pairing (hence, reduced usability is experienced only once and the
risk of e.g. being shoulder surfed can be avoided by additional ef-
fort), D2U authentication is intended to be used frequently. Conse-
quently, usability drawbacks through additional effort would impact
users more frequently.

The reason for D2U authentication being employed rarely can be
explained with a comparison to mutual authentication between ma-
chines, as both users of mobile devices authenticate to their devices
and devices authenticate to their users this can be considered to be
a form of mutual authentication. While mutual authentication is well
established in machine-to-machine (M2M) communication (e.g. web
technologies like IPsec [83]) it is rarely used for authentication involv-
ing humans. This is because in contrast to M2M authentication, both
U2D and D2U authentication are limited by certain human factors.
In comparison to M2M authentication, D2U authentication is espe-
cially limited in channel bandwidth (exchange of larger portions of
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information takes longer for humans than computers) and compu-
tational capabilities (e.g. cryptographic mathematics, which humans
can hardly do without aid of computers). Both make communicating
authentication information from devices to humans more challenging
than communicating it in between machines. D2U authentication is
further limited by previously discussed additional cognitive load and
time to perform authentication in the same manner as U2D authenti-
cation.

As little previous work covers mobile D2U authentication this field
is still open for research and proposals of novel approaches. Simi-
larly to previously discussed security mechanisms employing these
approaches might result in a trade-off between security and usabil-
ity where increasing security tends to decreases usability and vice
versa [72]. Consequently, D2U authentication approaches need to be
designed carefully, with their obtrusiveness in mind and as little as
possible overhead for users. However, as D2U authentication is cov-
ered by little previous research, even approaches focusing on being
unobtrusive at the cost of proving less-than-optimal security will lead
to a security gain on mobile devices.

3.7 summary

To protect data on mobile devices from unauthorized physical access
of third parties, different concepts of mobile authentication can be
employed. However, as discussed in this chapter, employing authen-
tication usually comes at the cost of also impeding daily usage of
mobile devices by legitimate users. The resulting trade-off between
security and obtrusiveness is apparent for all three different types
of authentication: knowledge, inherence (biometrics), and possession
(tokens). To summarize authentications concepts presented in related
work we attempt to categorize their most important characteristics as
being either advantageous, neutral/variable/not applicable, or disad-
vantageous in terms of mobile environments (Tab. 1).

The most frequently employed knowledge based authentication ap-
proaches include PINs and passwords on desktop computers as well
as PINs and graphical patterns on current mobile devices. Their core
advantage is that the authentication secret can be changed easily in
case it is being disclosed to third parties. Their drawbacks include
increased cognitive load and additional time required to perform au-
thentication, especially on mobile devices. As a result this leads to
users choosing weak knowledge based authentication secrets as well
as some users not using knowledge based authentication approaches
at all. Graphical passwords, of which graphical patterns are a special
form, have been designed to reduce the corresponding cognitive load
imposed on users. However, they are by design unable to prevent cog-
nitive load altogether. This is especially problematic when scalability
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PINs U2D, knowledge - - + + - + - + - –

Passwords U2D, knowledge - - + - - + - + - Slower than PIN, higher cognitive load

Graphical passwords U2D, knowledge - - + - - + - - - Cognitive load smaller than with PIN and PW, slower than PIN

Graphical patterns U2D, knowledge - - + - + - - - Faster than most graphical passwords, slower than PIN

Various biometrics U2D, inherence + + - + + - Need additional measures to protect biometrics, applicability situation de-
pendent, can provide for transparent authentication

Tokens U2D, possession + + - + + - Additional costs, additional piece of HW, proximity based approaches
could be exploited by attackers

Multi-modal (multi-factor) U2D, multiple - - - Higher security, more obtrusive

Multi-modal (multiple options) U2D, multiple + + - Less obtrusive, weakest modality determines system security

D2U D2U, knowledge - - + + + At the time being only considering knowledge: countermeasure to hard-
ware phishing attacks, no mobile approaches available for reference

Table 1: Overview of authentication concepts in related work, with different user-to-device (U2D) and device-to-user (D2U) authentication modalities.
Tendencies of the most important characteristics within mobile environments derived from related work are attempted to be summarized as
advantageous (+), neutral/variable/not applicable (empty), or disadvantageous (-).
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becomes important with multiple mobile devices, frequent device us-
age, and the requirement to use complex but different authentication
secrets for different devices.

In contrast, biometric authentication does not bear additional cog-
nitive load on users for remembering an authentication secret. How-
ever, unlike knowledge based secrets, biometrics cannot easily be
changed in case they are disclosed to third parties. As a consequence,
while mobile biometric authentication is less obtrusive, it exposes
their users to the additional risk of biometrics being disclosed. This is
why biometrics deserve adequate protection on mobile devices with
e.g. algorithmic template protection or secure hardware. While tem-
plate protection relies on the algorithmic security of the correspond-
ing approaches and can be computationally expensive, approaches
using secure hardware like smart cards have to be designed with
corresponding computational limitations in mind. As a result, exist-
ing approaches are strongly adapted to individual biometrics and
can usually not be applied generically to the diversity of biometrics
available to modern mobile devices. Therefore, to utilize various bio-
metrics on mobile devices there would be a need for mobile biometric
authentication approaches that are suitable for secure hardware while
also being generically applicable to different biometrics.

Similarly to biometrics, token-based authentication prevents users
from choosing weak secrets and does not impose cognitive load on
users for remembering an authentication secret. However, it imposes
additional cognitive load in requiring users to remember to bring the
token along and to have it available for authentication. As tokens are
likely required to be as mobile as users’ mobile devices they can as
easily be forgotten, lost, or stolen as the mobile devices themselves. To
perform authentication the token needs to be presented to the mobile
device in some way – which can be obtrusive for users and requires
additional time. Depending on the authentication mechanisms this
can also result in the authentication being easily circumventable by
attackers if they are able to e.g. access the device while it is in prox-
imity to both its owner and the authentication token. Additional com-
plications with token-based mobile authentication arise from costs
to purchase and revoke tokens, potentially different tokens being re-
quired for different authentication approaches, and the requirement
to bring these different tokens along with mobile devices. However,
there seems to be room for novel mobile token-based authentication
approaches that utilize multiple mobile devices so that e.g. one device
becomes the token for authentication to other devices.

The combination of multiple authentication approaches on mobile
devices, possibly incorporating different modalities, seems promising.
One advantage of such combinations is that individual approaches
can better focus on a subset of situations in which authentication is re-
quired than one single approach that would need to cover all those sit-
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uations. Combining different authentication approaches gives users
choices to use the best suited approach in a certain situation, therefore
has the potential to reduce overall obtrusiveness of mobile authentica-
tion. If implicit authentication approaches are incorporated this could
further lead to users being authenticated transparently in certain sit-
uations, e.g. when a smart phone is in the trousers pocket while
walking. Frameworks for mobile authentication like CORMORANT
thereby facilitate the integration of diverse and novel authentication
approaches. This is because developers are able to focus on the corre-
sponding authentication approach and can leave the utilization of its
result (i.e. aggregating authentication from different modalities and
deriving an overall authentication decision) to the framework. The de-
velopment of additional, alternative, and novel mobile authentication
approaches is further aided by the increasing amount of data mobile
devices have access to. For example, mobile authentication could in-
corporate many different sensed biometrics ranging from ECG [25]
to wrist vein authentication [101], where each could suit different
authentication situations. The more such authentication approaches
are available, the more options users have to choose from, hence the
higher the chances that one approach will suit the current situation
and provide for an improved user experience.

In contrast to user-to-device authentication, mobile device-to-user
authentication is rarely addressed with existing literature. This poten-
tially enables attackers to perform hardware phishing attacks with
current mobile devices – but also leaves room for novel approaches
and proposals of how mobile devices could authenticate to their users.
However, similar to regular user-to-device authentication these ap-
proaches need to be designed with their obtrusiveness in mind, in-
cluding cognitive load and additional time required to perform au-
thentication.

To summarize, these issues illustrate that a number of areas and
challenges with mobile authentication remain interesting for future
research. These especially include intensified usage of diverse mo-
bile biometrics together with according mechanisms to protect used
biometrics, additional and alternative authentication approaches that,
amongst others, incorporate multiple mobile devices of the same user,
as well as the combination of diverse authentication approaches to
better suit diverse mobile authentication situations. In those areas
novel unobtrusive approaches could contribute to improving the over-
all user experience of mobile authentication, facilitate their usage, and
thereby reduce the effectively applicable threat model of unautho-
rized physical third party access to mobile device data.



Part II

O U R A P P R O A C H : U N O B T R U S I V E M U T U A L
M O B I L E A U T H E N T I C AT I O N W I T H

B I O M E T R I C S A N D M O B I L E D E V I C E M O T I O N





4
O U R A P P R O A C H : A N O V E RV I E W

Our work resides in the field of physical access protection of devices
in the mobile environment. As discussed in the last sections and
chapters, existing approaches to protect mobile devices from unau-
thorized physical access of third parties are sometimes not used, or
not used to their full capacity due to additional effort imposed on
users. This leads to those devices – thereby the data processed and
stored on them – being accessible by unauthorized people in multi-
ple situations throughout daily device usage. In our work we aim for
providing additional physical access protection mechanisms for mo-
bile devices. We aim to not bear significant additional effort on users
and to suit the diverse situations in which authentication might be
required. Overall, our approach thereby follows these statements: the
less classic, obtrusive and explicit authentication is required and the
more unobtrusive the core mechanics of employed approaches are,
the lower the overall obtrusiveness of mobile authentication becomes,
and the more realistically authentication is actually employed by end
users in daily device usage [9, 10, 88]. Thereby, the more different
unobtrusive authentication approaches are available to users (e.g. au-
thentication being possible in one of multiple ways) the higher the
chance that one such option is suitable for the current situation and
that it bears little or no additional overhead on users [109, 262].

Consequently, with our approach we enable new ways of unob-
trusively performing authentication with mobile devices by incorpo-
rating both user-to-device and device-to-user authentication (Fig. 10).
Our user-to-device authentication consists of an approach to generic
biometric MOC authentication and a token-based approach to unob-
trusively transfer the authentication states between mobile devices
utilizing mobile device sensors and device motion. Our device-to-
user authentication utilizes vibrations to communicate an authenti-
cation secrets to users. We shortly introduce these approaches in the
subsequent sections and discuss them in depth in their corresponding
chapters (Cha. 5, 6, and 7).

4.1 user-to-device authentication

With user-to-device authentication we strive for less obtrusive ap-
proaches and providing additional ways of users authenticating to
their devices. We further aim to protect users’ biometric data used
for authentication on mobile devices from being disclosed to third
parties or transferred to devices outside the control of users. We ad-
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(a)

(c)

(b) (a)

Device to user
authentication

(e.g. vibrations)

Sensor based
authentication
state transfer

Secure storage
and matching
of biometrics

Mobile devices

Biometric 
user to device
authentication
(e.g. gait, face)

User to device authentication

Device to user authentication

Figure 10: In our approach we incorporate user-to-device authentication as
(a) biometrics based MOC and (b) sensor based token authentica-
tion, and (c) vibration based device-to-user authentication.

dress those goals with an open, transparent, and generic biometric
MOC authentication to protect users’ biometrics and sensor based
token authentication to easily transfer authentication states between
devices to unlock them.

4.1.1 Biometric Authentication: MOC Authentication for Multiple Bio-

metrics

For securely using biometrics with mobile user-to-device authentica-
tion we present a MOC approach that is applicable to multiple bio-
metrics in a generic way (Fig. 10, a). Our approach uses a training
dataset for a specific biometric and offline training (outside mobile de-
vices, e.g. on desktop or server hardware) to obtain an authentication
model with a simplistic internal representation in the final trained
state. We then adapt and simplify features and model representation
to enable their usage on SCs.

Generic biometric MOC authentication thereby bears several advan-
tages with respect to the stated goals of user-to-device authentication.
Using biometrics for user-to-device authentication bears no cognitive
load and be preformed easily and quickly. The exact effort and dura-
tion can be influenced by the choice of biometrics and the employed
sensing mechanisms. Depending on type of biometrics, authentica-
tion can either be explicit (users being aware of authentication going
on, e.g. with classic explicit face or fingerprint authentication) or im-
plicit (users not being aware of authentication going on, e.g. possible
with continuous gait or face authentication). Overall obtrusiveness
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can be reduced with the latter or combining both types. The obtained
model can be used within SCs on mobile devices without requiring
retraining when enrolling new users. This leads to users not being
required to download any data to their mobile devices that represent
negative class samples during training. Further, the lengthy and bat-
tery draining model training process itself is not required on mobile
devices at all. Enrollment just requires the storage of samples from
the user. Biometrics are stored on mobile device within SCs. They
cannot easily be read from storage even if the device comes under
control of attackers. Attackers would need to be in control of the de-
vice and be able to monitor device memory while legitimate users
enroll or authenticate using their biometrics and our approach. This
raises the bar for disclosure of biometric information by increasing
the effort required for attackers. Finally, we argue that this approach
being generic can aid transition of other biometrics to using MOC
authentication in the future.

4.1.2 Token Authentication: Transferring Authentication States Between

Devices to Unlock Them

For reducing the number of times classic user-to-device authentica-
tion is required, and to add another option to performing user-to-
device authentication, we present ShakeUnlock, a token-based mo-
bile device unlocking approach based on briefly shaking two devices
conjointly (Fig. 10, b). We transfer the authentication state from the
already unlocked device to the locked device to unlock it as well. A
common use case would feature a wrist watch as token device, which
remains unlocked as long as it is strapped to the user’s wrist, and a
locked mobile phone, which is unlocked after both devices are shaken
conjointly.

Transferring authentication states to unlock mobile devices thereby
bears several advantages with respect to the stated goals of user-to-
device authentication. Shaking does not cause additional cognitive
load and requires little user attention to be performed. Users do not
have to look at the device during shaking which can be performed
single-handedly. This allows for unlocks e.g. while walking and car-
rying a bag with the other hand, and without looking at the device
screen. Providing shaking as alternative token authentication method
can reduce the number of times knowledge based or biometric au-
thentication is required to unlock mobile devices. Forging shaking
patterns is difficult, which impedes malicious unlocks in case attack-
ers gain control over a locked device but not the corresponding token
device.
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4.2 device-to-user authentication

To let mobile devices communicate authentication information back
to users, we present vibration based device-to-user authentication
(Fig. 10, c). This represents a countermeasure to hardware phishing at-
tacks, in which attackers replace the device with an identical-looking
malicious device to eavesdrop on users revealing their authentication
secret to the device. The revealed authentication secret could be trans-
mitted to the attackers immediately, who then conveniently authen-
ticate to the real device. To impede such hardware phishing attacks
we let devices communicate an authentication secret back to users in
parallel to them authenticating to their devices.

This approach to device-to-user authentication bears several advan-
tages with regard to our stated goals. It can be performed without
requiring additional authentication time if performed in parallel to
users authenticating to their devices. Users might further become fa-
miliar with their pattern, similar to being able to type a password
using muscle memory with user-to-device authentication. While we
are not aware of any studies on a muscle-memory-like effects on in-
tuitively recognizing vibration patterns, from previous studies on
muscle-memory effects [16, 205, 307, 311, 323, 370] we conjecture
that such effects could also be possible with vibration patterns. This
would allow users to intuitively recognize that “something changed”
in case of the pattern being different without significant additional
effort. In this case users can stop user-to-device authentication going
in parallel to not fully reveal their authentication secret. Further, ob-
serving device-to-user authentication information communicated via
vibration is more difficult to observe for attackers e.g. using a visual
or audio channel, which impedes eavesdropping attacks on this infor-
mation.

4.3 collaboration of constituent parts within our ap-
proach

By incorporating our improvements to mobile biometric and sensor
based authentication we reduce the overall effort users need to ded-
icate to authentication related tasks for physical access protection
on mobile devices. Authentication tasks become overall less obtru-
sive: users can be authenticated by their mobile devices with implicit
and possibly continuous biometric authentication approaches with-
out even noticing it, which does not bear any additional authentica-
tion effort on users. As those biometric authentication approaches use
MOC techniques to protect involved information, theft of biometrics
becomes noticeably more difficult for attackers. In cases where im-
plicit authentication is not suitable we can still offer multiple ways
of performing user-to-device authentication, namely a) explicit bio-



4.4 a perspective on our approach in a wider context 65

metric authentication, again using MOC techniques, and b) token-
based authentication by shaking devices conjointly. For example, to
one handedly unlock a mobile phone they just picked up users could
choose to either use e.g. face authentication or briefly shake the phone
conjointly with the already unlocked smart watch strapped to their
wrist. The common advantage of those approaches over frequently
used, classic knowledge based authentication approaches is that they
do not bear cognitive load on users. Further, by providing multiple
ways of authentication for one situation, chances are higher that one
way is well suited for the situation and only implies little overhead
for users.

In all those authentication situations devices can perform device-to-
user authentication too, by communicating an authentication secret
back to users. This addresses hardware phishing attacks by raising
the effort required to trick users into authenticating to the wrong de-
vices. Such device-to-user authentication bears little additional effort
on users, as it can be done in parallel to users authenticating to de-
vices themselves.

Note that while our approach will not be suitable to fully replace
classic, knowledge based authentication approaches, it is meant to
aid mobile authentication by reducing the number of times classic
authentication is required. The aim is to make authentication overall
more manageable with multitudes of mobile devices. In cases where
our unobtrusive authentication approaches are unsuitable, classic au-
thentication is meant to be used as fallback. Overall, we argue that
with our approach we thereby contribute to advancing mobile au-
thentication and provide one further step towards making authenti-
cation with a multitude of personal mobile devices unobtrusive and
manageable.

4.4 a perspective on our approach in a wider context

Our work is done in relation to and in corporation with CORMO-
RANT [148, 152, 153], the Android framework for continuous, risk-
aware multi-modal cross-device authentication. This framework is in
the focus area of a separate PhD topic driven by Daniel Hintze, ongo-
ing in parallel to this present thesis at the Institute for Networks and
Security (INS), Johannes Kepler University (JKU) Linz, Austria. COR-
MORANT focuses on combining different authentication approaches
across different devices of the same users in a generic way. The im-
plementation of CORMORANT is currently ongoing with its source
code being publicly available1.

From the perspective of CORMORANT our work can be seen as
ground laying work that provides additional approaches for unobtru-

1 CORMORANT framework source code: https://github.com/mobilesec/

cormorant.

https://github.com/mobilesec/cormorant
https://github.com/mobilesec/cormorant
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sive authentication on mobile devices. In contrast to CORMORANT,
it thereby focuses only on one to at maximum two devices at the same
time. Further, our work does not focus on fusing authentication re-
sults from different authentication procedures possibly conducted in
parallel on mobile devices. However, our approach can be embedded
in CORMORANT in the form of authentication modules2. It thereby
contributes to a diverse ecosystem of authentication approaches that
can be used across multiple mobile devices, with multiple authenti-
cation procedures possibly ongoing in parallel, and without bearing
additional authentication effort on users.

2 See https://github.com/mobilesec for details on individual CORMORANT au-
thentication modules.

https://github.com/mobilesec


5
A G E N E R I C A P P R O A C H T O M O B I L E B I O M E T R I C
M AT C H - O N - C A R D A U T H E N T I C AT I O N

In this chapter we highlight our biometrics based user-to-device au-
thentication approach. It is applicable to different biometrics and uses
offline training with feature and model simplification to enable the us-
age of features and models on SCs (Fig. 10, a). Parts of this chapter
have previously been published in [103, 104].

With modern mobile devices and their many different sensing ca-
pabilities it is reasonable to employ multiple biometrics in order to
achieve unobtrusive authentication in different situations. However,
biometrics need to be protected accordingly as they cannot easily be
changed in case of disclosure (Sec. 3.3). With modern mobile devices
and modern SIM cards it is reasonable to use smart cards (SC) to
protect biometrics used for authentication. The reason for this is that
modern mobile devices and SIM cards start featuring built-in SCs –
which cancels out the otherwise additional purchase cost of secure
hardware to protect biometrics. However, designing approaches for
biometric authentication utilizing SCs is challenging due to the com-
putational limitations of SCs (Sec. 3.3.3). Approaches thereby have to
be designed so that they are feasible within the limited storage and
processing capabilities of SCs. These limitations of SCs affect both the
internal structure of authentication models and number and type of
features that can be used with SCs. Further, as the transmission band-
width to/from SCs is limited, the amount of data that can reasonably
be sent to SCs during user authentication is limited as well. In order
for operations with biometric TOC and MOC approaches to be feasi-
ble on SCs, the used operations and approaches are usually domain
specific. This impedes approaches being applied to different biomet-
rics as the underlying operations have to be adapted accordingly.

To address these restrictions we aim for enabling a more generic
usage of simple machine learning (ML) models on SCs. Our generic
MOC approach computes authentication models offline with suffi-
cient computational power and does not require the models to be re-
trained during enrollment of individual users. The challenge therein
lies with the mentioned limitations of SCs which imply restrictions in
how biometric features and ML models can be calculated and repre-
sented for usage on SCs. We therefore propose a scheme which trains
and generates ML models offline (e.g. using server infrastructure),
then uses the simplified internal structure of trained models on SCs
in the matching process (Fig. 11).

67
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Figure 11: Conceptual overview of our MOC approach. The SC is high-
lighted in green.

Models suitable for this approach are those where the internal
structure translates to a simple representation in the final and fully
trained state (e.g. an equation). In contrast to matching on the SC,
the offline training, evaluation, and selection necessary to obtain this
structure in the first place can be arbitrarily complex. After obtaining
such a model offline, both features and models need to be adapted
to suit SC restrictions. This includes data types of features and mod-
els, as well as computations using those. Note that it is desirable to
integrate necessary adaption to features and models already in the of-
fline modeling process. Doing so allows for more precise estimation
of authentication performance, which is in turn important for model
tuning and selecting a reasonable model and model configuration
for usage on SCs. Consequently, both offline and on-device process-
ing rely on identical preprocessing and feature derivation. Further,
note that feature derivation up to feature simplification can be per-
formed outside the SC. This allows for more complex and powerful
feature derivation while not compromising any information previ-
ously stored on the SC.

We demonstrate our generic MOC approach on acceleration based
gait biometrics as well as face biometrics, using SCs restricted to ei-
ther 16 or 32 bit range integer calculations. We transform features
derived from biometric recordings and model structure used on the
SC to be represented in half of the integer range available on the
SC. This allows for multiplications within the available integer range.
We demonstrate that adequate MOC authentication is still feasible us-
ing limited bit representation of the obtained model, stored biometric
template, and new biometric recording. Summarizing, the contribu-
tions of our biometric MOC authentication approach are:

• We present a generic approach towards biometric MOC authen-
tication, wherefore we adapt both offline trained ML models
and features to enable their computation and handling on SCs.



5.1 relation to previous face and gait moc authentication 69

• We apply our generic MOC authentication approach to face au-
thentication and acceleration based gait authentication as exam-
ples of biometrics with usually more complex matching and
bigger templates. To the best of our knowledge, this is the first
practical approach to gait MOC authentication with acceleration
data.

• We evaluate the feasibility and performance of our generic MOC
authentication approach with publicly available data sets, using
both 16 and 32 bit Java Card SCs. We achieve 11.4% and 2.4-5.4%
EER for gait respectively face authentication, while staying in
the range of 2 s respectively 1 s for transmission and calculation
durations on SCs.

Our approach to generic mobile biometric MOC authentication
thereby facilitates the secure usage of different biometrics with mo-
bile authentication. This can further facilitate more biometrics being
transferred to using MOC techniques, thereby more biometric authen-
tication approaches (that enable unobtrusive authentication in differ-
ent situations) being available to mobile users without exposing them
to the additional risk of disclosing their biometrics.

5.1 relation to previous face and gait moc authentica-
tion

The reasons for choosing gait and face biometrics for the evaluation
of our generic MOC approach are twofold. Firstly, both biometrics
can be utilized on most modern mobile devices as their recording
only requires cameras and acceleration sensors. Both are shipped
with most modern off-the-shelf mobile devices, hence enabling the
usage of both gait and face biometrics on most mobile devices. Sec-
ondly, the differences between gait and face biometrics emphasize the
applicability our MOC authentication approach to different types of
biometrics. Both are representative for different types of biometrics.
Gait represents behavioral, weak, and continuous biometrics. It can
be used to unobtrusively authenticate mobile users while walking.
While the applicability of gait authentication is limited to the dura-
tion of users walking, it virtually requires no user attention for au-
thentication. In contrast, face authentication represents physiological,
strong, and non-continuous biometrics. While face authentication can
be considered to be more obtrusive, its authentication confidence is
stronger and its applicability is arguably wider than with gait biomet-
rics. Further, different underlying features and matching approaches
are usually employed with face and gait biometrics.

To the best of our knowledge, there exist no previous approaches
to acceleration based gait MOC authentication. With the majority of
existing gait authentication approaches (Sec. 3.2.4), either retraining
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the model for individual users would be required, or neither training
the model, nor using a ready trained model to predict new samples is
feasible on SCs with respect to their computation requirements. This
specifically concerns approaches using DTW during matching tem-
plates. For two time series of length m and n, DTW brings a memory
complexity of at minimum m ·n, which renders it infeasible for usage
on regular SCs. Though there exist some effective approaches to re-
duce the computational complexity of DTW (thereby also restricting
its warping power), such as the Sakaboi-Chiba band [255, 297], even
most limited DTW approaches are difficult to calculate on SCs. Conse-
quently, SC based gait authentication has to utilize different types of
models for matching templates. Still, feature derivation mechanisms
used in gait authentication literature can be adapted for gait MOC
approaches – as long as it is computed outside the SC.

The work closest to our MOC approach applied to face biometrics
is Bourlai et al. [38]. Commonalities include the usage of an LDA
model, a linear combination, and a threshold for the authentication
decision. Still, both approaches rely on different core mechanisms: a)
we do not use samples such as faces directly, but distances between
samples to distinguish between comparisons of samples of the same
person from those of different people. As we only train our model
once offline, we can ship the pre-trained model with SCs on mobile
devices. This allows enrolling new users without requiring any re-
training, while the enrollment of one user is still completely indepen-
dent of the enrollment of other users. b) with a client specific LDA,
the distance to the client template is combined with the distance to
the mean of impostors in a one dimensional way. In contrast, we use
our model and multi-dimensional distances between a new sample
and the reference template to derive an authentication decision. c) we
perform feature derivation outside the SC. This prevents computing
features for the enrolled template on the SC for each authentication at-
tempt as done in [38] and allows for computationally more intensive
operations during feature derivation in general. The downside is that
this prevents exchanging feature derivation for existing templates at
a later point in time. In summary, our MOC approach utilizes the dis-
tances between samples to distinguish between comparisons of sam-
ples from the same person and those of different people. In contrast
to previous work on face MOC authentication, we can further ship
the pre-trained model with SCs on mobile devices without requiring
any retraining to enroll of users.

5.2 threat model

When biometrics are used for authentication on mobile devices attack-
ers could strive to compromise users’ biometrics as well as to circum-
vent the authentication using the obtained biometric data. Attackers
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could try to obtain data about users’ biometrics outside mobile de-
vices. This could be done by collecting publicly available biometric
data, by gaining unauthorized access to confidential computers, ser-
vices, or databases that store and/or process biometrics data, or by
attackers recording biometric data of legitimate users themselves. As
our MOC approach does not focus on protecting biometric data out-
side mobile devices those attack vectors are declared out of scope.

On mobile devices, attackers could try to compromise a biomet-
ric system that is not protecting biometric data on different ways
(Fig. 12) [274].
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Figure 12: Attack vectors to biometric systems not protecting biomet-
rics [274].

Attack vector 1 refers to attackers presenting fake biometrics to
the sensor (to achieve authentication) and eavesdropping biometric
data recorded by the sensor (to compromise users’ biometrics). At-
tack vector 2 refers to eavesdropping or manipulating the communi-
cation from sensors to the authentication software. Attack vector 3,
4, and 5 include eavesdropping or manipulating the feature extractor,
the matcher, or the communication in between them. Attack vector 6

refers to manipulating the authentication decision to achieve authen-
tication. Attack vector 7 refers to eavesdropping or manipulating the
communication between the template storage and the matcher. At-
tack vector 8 refers to eavesdropping or manipulating the enrollment
or enrollment data. Attack vector 9 refers to eavesdropping or ma-
nipulating the communication between enrollment and the template
storage. Attack vector 10 refers to extracting or manipulating stored
biometric data. Attack vector 11 refers to attacking the application
that utilizes the authentication decision.

With our MOC approach we strive to protect biometric data used
for authentication on mobile devices from disclosure to third parties.
Biometric data is involved in attack vector 1-5 and 7-10, which attack-
ers could therefore use to extract biometric data about the legitimate
user. However, the required capabilities of attackers and the required
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timing for those attacks differ. With attack vector 10, after the legit-
imate user has enrolled, attackers could access the template storage
by different means. Besides others, these include bringing the device
under their physical control and accessing the storage via a file sys-
tem as well as physically disconnecting the storage from the mobile
device and connecting it to custom hardware to read the information
it contains. These attacks neither require attackers to be able to live
monitor or manipulate device memory (e.g. using malware executed
with elevated privileges on the mobile device) nor do they need to be
performed at a certain time.

With capabilities to monitor or manipulate the device memory at-
tackers might also be able to extract biometric data using attack vec-
tor 1-5 and 7-9. They could thereby directly read sensor values or
eavesdrop biometric data between sensor and feature extraction, be-
tween feature extraction and matcher, between enrollment and tem-
plate storage, or between template storage and matcher. They could
further monitor the computations done for feature extraction, match-
ing, or enrollment to extract biometric data. An important difference
between those attacks is the timing when they are possible. To extract
biometric data attack vector 1-4 can only be exploited while the legit-
imate user authenticates, and attack vector 8-9 only while the legiti-
mate users enrolls. In terms of malware, this requires attackers to run
such malware while the legitimate users enrolls or authenticates for
extraction of biometric data to be successful. In contrast, attack vector
5 and 7 could also be exploited while an authentication attempt is
made, independently of it being made by the legitimate user or not.
This enables attackers to extract biometric data without requiring any
interaction by the legitimate user (e.g. by bring a device under their
control, manipulating it, and triggering an authentication attempt).
Consequently, the most important weaknesses of biometric systems
not protecting biometric data are attack vector 10, 7, and 5 – which
are the attack vectors our approach addresses using MOC techniques.

Attack vector 10 is addressed by using a TOC approach for storing
biometric data. With TOC approaches, attackers cannot access data in
the template storage and are required to trigger an authentication at-
tempt for templates to be fetched from the SC1. Attack vector 5 and 7

are addressed with using a MOC approach – like the one we propose –
instead of a TOC approach. As with MOC approaches biometric data
stored on a SC never leaves it attackers can neither access the com-
munication between template storage and matcher nor the matcher
itself. Attackers capable of monitoring device memory are therefore
required to perform eavesdropping to obtain biometric data while the
legitimate user enrolls or authenticates.

1 Attacks on the security of SCs themselves, such as side-channel attacks by Kocher et
al. [182] or Vermoen et al. [354], which try to extract the biometric template from the
SC itself, are defined to be out of scope.
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In order to address attack vector 1-4 and 8-9 for attackers capable
of live monitoring device memory while the legitimate user enrolls or
authenticates, securing/hardening the whole processing chain from
sensors up to the authentication decision is required. This also ad-
dresses another form of attack within attack vector 2. Attackers which
can physically manipulate the mobile device could add additional
eavesdropping hardware in between the sensor and the feature deriva-
tion. This would enable them to eavesdrop sensed biometric data
without requiring capabilities to live monitor device memory. One ap-
proach to protect the whole processing chain from the sensor to the
authentication decision is to combine MOC with a trusted execution
environment (TEE, e.g. ARM TrustZone2) that protects information
from sensors up to the SC. Another approach is to combine all steps
in an all-in-one piece of hardware, which is referred to as system-
on-card (SOC), and of which MOC represents the essential part of
internally matching biometric samples.

This is why both the combination of MOC with a TEE as well
as SOC can be seen as a superset of MOC. Consequently, providing
generic and widely applicable mobile MOC approaches is an essential
part of fully protecting biometric information on mobile devices from
attackers with live eavesdropping capabilities. Our approach towards
generic MOC authentication is a first step towards the long-term goal
of protecting mobile biometrics in a transparent and well evaluated
way. For the first time it combines a MOC approach, generic match-
ing concepts, and biometrics with traditionally bigger, therefore more
challenging templates (such as facial images and gait cycles compared
to e.g. fingerprints). This is why we purely focus on the MOC aspect
and, for the time being, declare other attack vectors, such as the usage
of malicious software/trojans on the sensor data processing pipeline
to be out of scope.

5.3 generic biometric moc authentication

Our MOC approach is divided into offline model generation and
usage of the obtained model for enrollment and authentication on
the mobile device. Both parts share steps for preprocessing, feature
derivation, and feature simplification (Fig. 13). The offline part de-
termines the parametrization which is then applied on mobile de-
vices alike. On the mobile device those steps are done outside the
SC, which thereby allows for computationally more complex opera-
tions or operations specific to certain biometrics. Based on prepro-
cessed biometric samples, offline computation trains an authentica-
tion model, simplifies it, applies feature selection, and finally esti-
mates the resulting authentication performance. The obtained model

2 ARM Trust-Zone: http://www.arm.com/products/processors/technologies/

trustzone/

http://www.arm.com/products/processors/technologies/trustzone/
http://www.arm.com/products/processors/technologies/trustzone/
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Figure 13: The offline part of our generic MOC approach computes and sim-
plifies an authentication model, then selects the most important
features to be used on mobile devices. On mobile devices, our
approach uses the determined parameters and model to perform
MOC authentication. The SC is highlighted in green.

is stored on the SC integrated in mobile devices, which then performs
the MOC operation using stored samples and newly recorded sam-
ples. Therefore, no (re)training of the model is required in order to
enroll new users.

5.3.1 Offline Model Creation

With X bit SCs, integer operations within X bit range are done in hard-
ware, therefore are fast. We consequently strive to keep computations
on SCs within this range. More specifically, we use a linear model
on the SC, which internally computes a result using a linear combi-
nation of feature vector and model slope vector3. We therefore adapt
features and model slope so that their linear combination is possible
within X bit range on the SC.

On the one hand those simplifications lead to faster computations.
On the other hand they also lead to a more coarse resolution of the
feature space. For example: the feature space of 10 features expressed
in 8 bit is limited to 28

10 ≃ 1.21 · 1024 possibilities, which corresponds
to a theoretical maximum entropy of 80 bits. Expressing the same fea-
tures in 16 bit results in twice the theoretical maximum entropy of 160

bits4. One could assume that using less information in features and
models (due to using 16 instead of 32 bit SCs) would reduce the sub-
sequent authentication accuracy. However, our evaluation indicates
the impact to be negligible.

3 The slope is a vector of numeric coefficients and defines the direction and steepness
of linear models.

4 Due to the uneven distribution of biometrics in feature space, biometric approaches
are usually unable to exploit the full feature space [248]. Hence, depending on the
used biometrics and features, the resulting true entropy is necessarily smaller than
this theoretical boundary.
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5.3.1.1 Feature Simplification

To work with X bit integer space SCs, we transform (scale, shift, and
round) original real-valued features to fit X

2
bit integer range. The

transformation uses a vector of features ~fo that contains one individ-
ual feature from all samples in offline training data, then utilizes its
mean and standard deviation (SD) for transformation (Eq. 5). The
transformation applied to an original feature might result in values
that are bigger or smaller than the X

2
bit space, which we cap at the

boundaries (Eq. 6). This ensures that the X
2

bit space can be optimally
used for the mainstream data, while boundaries are respected also
for new, unseen data with potential outliers. The transformed vector
of features ~ft therefore consists of values in the range [0, 2

X
2 − 1], e.g.

for 16 bit space the range of [0, 255]. This transformation is applied to
all features.

~fr = round

(

~fo −mean( ~fo)

2 · SD( ~fo)

)

· (5)

(2
X
2 −1 − 1) + (2

X
2 −1 − 1)

~ft =



















0 for ~fr < 0

2
X
2 − 1 for ~fr > 2

X
2 − 1

~fr else

(6)

On mobile devices, the same feature preprocessing and simplifica-
tion transformation is applied to features of new recordings during
enrollment and authentication. Therefore, the mean and SD per fea-
ture computed from offline training data are stored on mobile devices
outside the SC5. After simplifying features, the obtained simplified
biometrics feature vectors are handed to the SC for purpose of enroll-
ment or authentication.

5.3.1.2 Model Training

Offline model training uses pairs of samples represented by their fea-
ture vectors. At first, the distance between two biometric feature vec-
tors ~v1 and ~v2 yields an absolute distance vector d( ~v1, ~v2) of same
length, also in X

2
bit representation (Eq. 7).

d( ~v1, ~v2) = | ~v1 − ~v2| (7)

We refer to feature distance vectors originated by the same person
as being of the positive class P and to those originated by different
people as being of the negative class N. Using feature distance vectors

5 Due to subsequent feature selection only a subset of those features remain. Storing
and performing the simplification is only done for actually used features.
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from our offline training data we create a classification model able
to distinguish between the P and N class (for details on how data
partitioning is done for model training and evaluation see Sec. 5.4).
The obtained model can then be used on the mobile device to decide
if a new feature distance vector is a P or N sample.

As classification model we use a linear discriminant analysis (LDA)
model [139]. In contrast to the previously utilized [103] generalized
linear model (GLM) [91], LDA aims to maximize the P-N inter-class-
distance and minimize the P and N intra-class-distances of samples.
Therefore, LDA models can usually provide for better class separa-
tion over GLM models. However, as both models are linear models,
in their ready trained state both can internally be represented by a
slope ~so (model coefficients) and an additional intercept I (offset to
the origin of the coordinate system). For a distance vector ~d from
a template and a new recording, those are used to predict the class
membership Cd using a linear combination (Eq. 8, ⊙ depicts the piece-
wise multiplication of vector elements).

Cd =











P for
∑

i

~so ⊙ ~d < I

N else
(8)

Such linear combinations are simple enough to be computed on a SC,
which is a core reason for choosing this model type. From training
we obtain the optimal slope and intercept – which are later used to
predict the class of new samples in both an offline evaluation of our
generic MOC approach as well as the application case of on-device
authentication.

5.3.1.3 Model Simplification

The slope ~so and intercept I obtained from model training are real-
valued and, similar to biometric features, have to be simplified to
enable their usage on a X bit integer SC. We therefore scale origi-
nal model coefficients ~so to optimally fit a X

2
bit space and apply a

cap at boundaries, resulting in a transformed slope ~st (Eq. 9 and 10).
In contrast to transforming biometric features (Eq. 5), no shift is ap-
plied. This would otherwise change the meaning of coefficients, as
coefficients around 0 have less influence on the result than those with
higher absolute values.

~sr = round
(

~so

2 · SD( ~so)

)

· (2X
2 −1 − 1) (9)
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~sr else

(10)
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Having both feature distance vectors and the slope in X
2

bit inte-
ger representation now allows for their piecewise multiplication on
SCs in X bit integer range (Sec. 5.3.2). Therefore, this can be done ef-
ficiently on SCs that only support calculations in X bit integer range
in hardware.

5.3.1.4 Feature Selection

After model training, features that are associated to small coefficients
necessarily have small influence on the output – hence both feature
and coefficient can possibly be removed without severely influencing
classification performance. As selection criteria we thereby use the
strongest absolute coefficient cmax as reference: a coefficient ci is se-
lected if it fulfills ci > α · cmax, with α in the range [0, 1]. For details
on used thresholds α and number of selected features for individual
biometrics see Sec. 5.4.

By performing feature selection we achieve reduced storage re-
quirements and computations on the SC, as well as reduced features
to transfer to the SC, which therefore reduces the overall SC process-
ing duration. Another, smaller advantage is that relying on stronger
features could slightly increase overall predictive power of the model.
However, as small coefficients do not necessarily denote features com-
pletely unimportant for separating classes, doing this might as well
slightly reduce prediction capabilities.

5.3.2 Mobile Device: Enrollment and Authentication

Preparation of mobile devices comprises storing the feature normal-
ization and simplification parameters on the mobile device, as well
as storing the model (slope and intercept) directly on the SC. Af-
ter data recording, enrollment and authentication perform data pre-
processing, feature derivation, and feature simplification as stated in
Sec. 5.3.1. On mobile devices those can be done outside the SC, as
they do not use any information about templates previously stored
on the SC. For enrollment, m feature vectors – derived from m newly
recorded biometric samples – are transferred to the SC, where they
are stored in the enrolled template for later usage. No further cal-
culations are done on the SC. For authentication, n feature vectors
from n newly recorded biometric samples are transferred to the SC.
As this latter transmission is done for each authentication attempt,
the transfer period is important and measured in our evaluation in
Sec. 5.4.

On the SC we perform m · n comparisons between all m stored
reference samples and all n newly transmitted samples using the
stored, offline-computed model. To keep those m · n linear combi-
nation within a range of X bit (especially during summing interme-
diate, piecewise products of slope and difference vector), we utilize
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the mean value instead of a sum. Hence each intermediate product is
immediately divided by the length of the slope vector to predict the
class Cd (Eq. 11).

Cd =











P for
∑

i

(

~st,i· ~di

length(~st)

)

< I

N else
(11)

The resulting m · n predictions, each indicating P or N class, are
treated as votes. Using majority voting we compute a final, binary au-
thentication decision from them, which is handed from the SC to the
mobile device to authorize or deny an authentication attempt. If we
would instead hand an authentication probability from the SC to the
mobile device, this would conceptually allow for more flexible feed-
back to users. The downside of doing so is the danger of enabling hill
climbing attacks to unlock the system or deriving information about
users’ biometrics (cf. [117, 222, 347, 355]), which is why we yield only
binary authentication decisions from the SC.

Besides allowing for linear combination in hardware on X bit SCs,
our generic MOC approach has the advantage of requiring only (n+

2) · X
2

bits of storage memory on a SC for the model, when using n fea-
tures (n corresponds to the slope, 2 corresponds to the intercept). For
example, with 16 bit SCs, a model for 10 features could be expressed
in only 12 bytes of SC storage. Similarly, m samples in an enrollment
template require only m · n · X

2
bits of storage. For example, with 16

bit SCs, 8 samples consisting of 75 features require only 600 byte of
SC storage.

5.4 evaluation

We evaluate our generic MOC approach on 16 and 32 bit SCs with
face and gait biometrics, measuring both SC computation duration
and authentication performance. We use a 16 bit JCOP 2.4.1 SC with
80 kB EEPROM memory running Java Card version 2.2.2 and a 32

bit SIM-card with 1 MB non-volatile memory and Java Card version
3.0.1. Communication was done over the contact interfaces of these
cards using the same card reader.

5.4.1 Duration on Smart Cards

The duration of transferring one sample with 75 features to the SC
and yielding an authentication decision back was measured to be on
average 31.5 ms (SD=0.14 ms) with 16 bit SCs and 16.7 ms (SD=0.08 ms)
with 32 bit SCs. This duration excludes computations on the SC and
scales linearly with the amount of samples sent. Computing our com-
plete approach on SCs also shows a nearly linear increase of com-
putation time over both number of samples in the enrolled template
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and number of features per sample (Fig. 14). Those calculations in-
clude the computation of distances between samples in the enrolled
template stored on the SC with newly transmitted samples, the linear
combination of distances with model parameters determined offline,
the voting of individual results to obtain an authentication decision,
and the yielding thereof.

(a)

(b)

Figure 14: Average duration of our generic MOC approach on 16 and 32 bit
SCs, including transmissions, for (a) different number of samples
in the enrolled template, using 75 features per sample, and (b)
different number of features per sample, using 32 samples in the
enrolled template.

In absolute numbers, data transmission time becomes negligible
compared to computation time on the SC. This implies that changing
the number of samples m in the enrolled template and number of
samples n in the new recording has little impact if the number of
total votes m · n is unaffected. With using m · n = 64 we achieve
an average computation time of 1608 ms and 2010 ms for 16 and 32

bit SCs, and 824 ms and 1032 ms when using m · n = 32 instead. The
increased duration for 32 bit SCs has two reasons: a) twice the amount
of data needs to be transmitted due to samples containing twice the
amount of information as compared to 16 bit SCs. b) the amount
of data that can be sent in one query is limited to 255 bytes by the
transmission protocol of the SC (cf. application protocol data units
(APDU) in [162]). Consequently, one 16 bit feature is transferred as
two separate bytes, of which conversion to one 16 bit short on the
SC requires additional time. While this limitation could be overcome
by using the extended version of the protocol (extended length fields
in [162]), in our measurements we consider the short and therefore
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slower variant for interoperability with all currently deployed smarts
cards.

5.4.2 Evaluation Setup for Using Different Biometrics

To obtain realistic authentication performance estimates of people un-
seen by the model during training, we perform a non-overlapping,
50%/50% population independent split [164] on the corresponding
datasets. We thereby assign 50% of participants to the training parti-
tion, which is used for training the model, and 50% of participants to
the test partition, which is only used once for estimating the perfor-
mance of the chosen and trained final model on yet unseen people.
We further use only training data to determine parameters for feature
derivation, simplification, and selection, then use the determined pa-
rameters to transform test data the same way. Within both training
and test partition we use all combinations of different samples origi-
nated by the same person to obtain P distances and all combinations
of samples originated by different people (within the corresponding
partition) to obtain N distances.

The training partition is used to train and evaluate different pa-
rametrizations of our model to find a suitable configuration for dis-
tinguishing between P and N distances. As training and evaluation
procedure we thereby use well established 10-fold cross validation
with 10 repetitions and report the fit as receiver operating charac-
teristics (ROC) curve, area under the ROC curve (AUC), and equal
error rate (EER). After an optimal parametrization has been found
(i.e. minimal coefficient threshold α and nr. of votes m ·n), the model
is trained again using this configuration and all training data. The
resulting model is evaluated once on the test partition to obtain a
realistic authentication performance estimate on data of yet unseen
people. For this we report the resulting true positive rate (TPR) and
true negative rate (TNR). For comparability we additionally also re-
port the ROC curve, AUC, and EER, when using all parametrization
determined from training on the test partition, except the final deci-
sion threshold.

The resulting model further serves as basis for voting when using
multiple biometric samples in both template stored on the SC and
new recordings for authentication. Thereby, m cycles are contained
in the enrolled template and n new recordings are provided during
authentication – which results in a total of m · n samples and votes.
For tuning the voting approach we use the same data partitions, with
the training partition being used to evaluate the authentication per-
formance of different amount of votes. Then, test data is again used
only once for estimating the authentication performance for the final,
voting based authentication model on data of yet unseen people.
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5.4.3 Evaluation with Gait Biometrics

For evaluating our MOC approach with gait biometrics we utilize
cycle based gait authentication based on acceleration data recorded by
off-the-shelf mobile devices. In contrast to previous research on gait
authentication we use a MOC approach, a non-DTW based model,
and combine features previously used in acceleration gait recognition
with features from other domains.

5.4.3.1 Gait Data Source

For our evaluation we utilize the acceleration gait database of Muaaz
and Mayrhofer [242] which contains 3D acceleration recordings of 35

people, each walking about 550 m in total. The data was recorded
with off-the-shelf smartphones featuring 100 Hz 3D accelerometers,
with phones being placed realistically in trousers pockets. Further,
for each participant, recording was split into two sessions with a gap
of on average 25 days between recording, which allows for realistic
cross-day evaluations of gait authentication systems. From this data
we utilize cross-day, left-pocket recordings of all participants to train
and evaluate our generic MOC approach with gait biometrics.

5.4.3.2 Gait Data Preprocessing and Feature Derivation

Preprocessing mechanisms are adapted from Nickel [254] as well as
Muaaz and Mayrhofer [240, 242], which comprise of walking detec-
tion and preprocessing, as well as subsequent step detection and
preprocessing, which we briefly summarize here. From 3D acceler-
ation recordings, we extract walking segments with y-axis accelera-
tion variance above 0.8m

s2
for at least 10 s. To compensate for gravity,

we remove the mean acceleration segment and axis, then compute
the resulting acceleration magnitude. As acceleration sampling is not
necessarily uniform, we further perform a linear interpolation to ob-
tain a uniform sampling rate of 100 Hz. For noise reduction we apply
a Savitzky-Golay filter [301] with window length of 150 ms and poly-
nomial of 1st order. The core advantage of this filter over frequently
used running mean or median filters is the better retaining of the
original signal shape.

For step cycle segmentation, reference cycles are extracted from
each walking segment, around the middle of the segment [242]. Those
are used to determine previous and successive starts of cycles in the
same walking segment, which in turn are segmented into individ-
ual gait cycle samples of the corresponding individual. Furthermore,
those are linearly interpolated to a uniform length of 100 acceleration
values each, which correspond to a duration of 1 s at a 100 Hz sam-
pling rate. Cycles that diverge largely from the majority of extracted
cycles are further defined as outliers and discarded. For that purpose
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we compute the normalized dynamic time warping (DTW) distance6

between all n cycles and discard those cycles for which more than n
2

distances are above a predefined threshold of 0.6. The remaining gait
cycles are used in feature derivation and subsequently handed to the
SC for enrollment or authentication (Fig. 15).

Figure 15: Examples of preprocessed gait cycles with a uniform length of 1 s,
consisting of 100 values each.

For each preprocessed cycle we derive a number of features. In the
time domain we utilize the mean, median, SD, median absolute devi-
ation (MAD), and autocorrelation (AC) series with a maximum shift
of 100 values as features on one cycle. AC has been used as signal
preprocessing in other biometric recognition tasks, such as electro-
cardiography (ECG) recognition [25], but to our knowledge not yet
in acceleration based gait authentication. To reduce naturally exist-
ing inter-feature correlation of the resulting AC feature vector, we
use only every third value as feature. With a sampling rate of 100 Hz
this corresponds to a shift granularity of 30 ms. In the frequency do-
main we compute the fast Fourier transformation (FFT) of the cycle.
As human body motion sensed by accelerometers usually yield us-
able information in the frequency range of about 0-20 Hz (cf. [40, 107,
368]), we use both frequency power and phase in this range as fea-
tures. Frequency power and phase are added as separate features to
a) avoid passing complex values to models and b) enable separately
treating them (e.g. normalizing and discarding features individually).
Additionally, we also compute a discrete wavelet transform (DWT)
representation of a cycle using a multiresolution analysis of 6 levels.
As wavelet we utilize a least asymmetric Daubechies wavelet [78] of
length 8. As with FFT features, all wavelet features are treated as in-
dividual features too. In total we thereby obtain a feature vector of
length 177, which we can reduce to 64 features for both 16 and 32 bit
SCs using a feature selection coefficient threshold of α = 0.35. There-
fore, with gait data our MOC approach requires 66/132 bytes of stor-
age (for 16/32 bit SCs) for the offline computed model and 64/128

bytes per gait cycle in the enrolled template. With 8 cycles in the tem-

6 This DTW distance calculation is done for data cleaning purposes outside the SC,
consequently is not related to the authentication model and matching procedure on
the SC.
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plate this leads to a total of 578/1156 bytes of storage requirement on
the SC.

5.4.3.3 Gait Model Training and Authentication Results

Due to slightly different amounts of gait cycles being discarded per
participant during preprocessing and data cleaning, preprocessing re-
sults in a total of 2132 and 1943 unique gait cycles in the training and
test partition, respectively. Due to the size of the training partition
and the resulting training complexity, we use a random subset of
100000 P and 150000 N distances for training the model. However, for
intra-training evaluation of trained models, the full training partition
size is utilized (Tab. 2).

Partition Cycles P N

Training 2 132 174 410 2 207 243

Test, pop. independent 1 943 168 976 2 158 427

Table 2: Gait biometrics: training and test partition sizes, as amount of gait
cycles and the resulting amount of P and N comparisons.

Gait evaluation results indicate a test partition EER of about 0.21

when using a single gait cycle in both enrolled template and new
recording for authentication (Tab. 3 and Fig. 16). When using 64 com-
parisons instead (e.g. 8 samples in both enrolled template and new
recording), we achieve an EER of about 0.114. With both, results dif-
fer only marginally between 16 and 32 bit SCs.

Partition Votes SC AUC EER TPR TNR

Training 1 16 bit 0.892 0.179 – –

Training 1 32 bit 0.892 0.179 – –

Test 1 16 bit 0.868 0.210 0.787 0.780

Test 1 32 bit 0.867 0.207 0.787 0.797

Training 64 16 bit 0.927 0.123 – –

Training 64 32 bit 0.928 0.123 – –

Test 64 16 bit 0.963 0.114 0.958 0.809

Test 64 32 bit 0.963 0.114 0.959 0.810

Table 3: Gait evaluation results for using a single gait cycle in both the tem-
plate and the new recording and a total of 64 votes (e.g. 8 templates
and 8 new recordings to compare to).

These results indicate that for acceleration based gait data, increas-
ing the granularity of model coefficient and feature space – as re-
quired for usage of our MOC approach on 16 bit SCs – does not lead
to considerably worse results over using 32 bit SCs, where the reso-
lution of data is allowed to be twice as fine. Using the feature space
available with 16 bit features and model coefficients on 32 bit SCs re-
sults in longer durations, caused by higher feature precision and the
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(a) 16 bit SC (b) 32 bit SC

Figure 16: ROC curves for using a single gait cycle in both the template and
the new recording and a total of 64 votes (e.g. 8 templates and 8

new recordings to compare to).

corresponding higher total amount of data transferred and processed.
Further, our results with using SCs also seem comparable with find-
ings from previous research without SCs on the same dataset with
18% EER when comparing single gait cycles [241] and 94% TNR and
64% TPR when using 4 gait cycles in one comparison [242]. In con-
trast to our approach those approaches rely on a computationally
intensive DTW unsuitable for computation on SCs. In comparison to
the latter result, our approach shows an improved TPR and worse
TNR –which corresponds to lower obtrusiveness, but also lower se-
curity. To achieve a higher and thereby comparable TNR with our
approach two options would be possible: a) adapting the decision
threshold, hence choosing a different point in the corresponding ROC
curve to achieve a higher TNR at the cost of a lower TPR. This would
cause security to be increased (less likely for attacks to be successful),
but also cause the approach to be more obtrusive (more frequently
rejecting legitimate users). b) using more comparisons of gait cycles
to derive an authentication decision. This would lead to an increased
TNR and TPR at the cost of longer delays caused by increased calcu-
lation durations and/or longer walking time until authentication is
performed.

5.4.4 Evaluation with Face Biometrics

For demonstrating our MOC approach with face biometrics, we use
view-based face authentication based on 2D wavelet transformed rep-
resentations of face images and estimate the authentication perfor-
mance with two publicly available face databases.
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5.4.4.1 Face Data Source

To demonstrate our MOC approach on face biometrics we use sub-
sets of the Yale-B [194] and the Panshot Face Unlock Database [102].
The Yale-B database contains facial images illuminated with a light
source from different azimuths and elevations relative to the face. We
thereby utilize face images with maximum azimuth and elevation
of ±20◦ between light source and face, which results in a database
subset 511 facial images of 27 participants. In contrast, the Panshot
Face Unlock database contains face images recorded from 9 different
perspectives in a 180◦ semi circle around the head using different
recording hardware. We thereby utilize facial images recorded from a
frontal perspective, which results in a total of 600 images of 30 differ-
ent participants. For both databases, we use grayscale, unsegmented
(neither face-detected nor cropped) images, then perform face detec-
tion and segmentation ourselves to obtain faces realistic for a mobile
authentication scenario.

5.4.4.2 Face Data Preprocessing and Feature Derivation

At first we equalize the image histogram per image, then perform
Viola and Jones face detection [356] to detect and segment the part
of the image related to facial information into quadratic images. We
only consider the face image if its diagonal is at least 1

4
the diagonal

of the original image. In mobile face authentication scenarios, where
users are within arms reach of their mobile device, requiring such a
relative minimal face image size effectively prevents a large portion
of potential false positive face detections. Further, if multiple faces
are detected, we only consider the biggest detection. We again equal-
ize the histogram per face image. Equalization results are different
than before face segmentation, as background information that con-
tributed to the equalization has now been removed from the images
(Fig. 17).

(a) Yale-B face database

(b) Panshot Face Unlock database

Figure 17: Examples of preprocessed, segmented, and equalized face images
from the Yale-B and Panshot Face Unlock databases handed to
feature derivation [102, 194].
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Before deriving features, we downscale images to reduce process-
ing power required in subsequent steps on mobile devices and SCs.
In preliminary experiments we used face image sizes of 64×64 and
32×32, in which the latter turned out to be sufficient for subsequent
feature derivation and MOC face authentication. We therefore used
face images of size 32×32 – but our MOC approach could be applied
analogously to other image sizes as well. As feature derivation we
use 2D discrete wavelet transformation (2D-DWT) and multiresolu-
tion analysis with a Daubechies Least-Asymmetric 2D Wavelet [78].
The resulting coefficients are treated as feature vector of length 1365,
which can be reduced to 75 features (16 bit SC), respectively 72 fea-
tures (32 bit SC), using a maximum feature coefficient threshold α =

0.95. Therefore, with face biometrics our MOC approach requires
77/148 bytes for storing the model (with 16/32 bit SCs) and 75/144

bytes per face in the enrolled template. With 8 face images in the
template this leads to a total storage requirement of 677/1300 bytes.

5.4.4.3 Face Model Training and Authentication Results

Due to slightly different amounts of faces detected per participant we
obtain slightly different training and test partitions for both databases
(Tab. 4).

Database Partition Faces P N

Yale-B Training 265 2 376 32 604

Yale-B Test 246 2 205 27 930

Panshot Training 296 2 780 40 880

Panshot Test 273 2 536 34 592

Table 4: Face biometrics: training and test partition sizes, as amount of face
images and the resulting amount of P and N comparisons.

Similar to the results of the gait based evaluation, authentication
performance differs only slightly between 16 and 32 bit SCs (Tab. 5

and Fig. 18). Using the Yale-B database we obtain a test partition EER
between 15-16% without majority voting of comparisons of multiple
face images. Additionally employing a majority vote boosts results
to 2.4-3% EER. Using a 32 instead of 16 bit SC marginally increases
the overall authentication performance, visible in both decreased EER
and increased AUC. Using the Panshot Face Unlock database, we ob-
tain a slightly worse test partition performance of 16.3% EER without
majority voting, which is decreased to 5.3-5.4% EER using majority
voting. We assume that results being worse is due to the Panshot
Face Unlock database containing faces with less distinctive features
recorded more uniformly, which makes distinguishing them more dif-
ficult. Overall, results confirm that our generic MOC approach is also
applicable to both types of SCs with facial biometrics. Similar to gait
results, the gain of using a 32 instead of 16 bit SC is minimal with face
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(a) Yale-B, 16 bit SC (b) Yale-B, 32 bit SC

(c) Panshot, 16 bit SC (d) Panshot, 32 bit SC

Figure 18: ROC curves for using a single face image in both the template and
the new recording and a total of 32 votes (e.g. 8 templates and 4

new recordings to compare to) for training and test partitions.
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Database Partition Votes SC AUC EER TPR TNR

Yale-B Training 1 16 bit 0.980 0.075 – –

Yale-B Training 1 32 bit 0.983 0.067 – –

Yale-B Test 1 16 bit 0.925 0.159 0.890 0.775

Yale-B Test 1 32 bit 0.932 0.150 0.900 0.784

Yale-B Training 32 16 bit 1.000 1.000 – –

Yale-B Training 32 32 bit 1.000 1.000 – –

Yale-B Test 32 16 bit 0.997 0.030 0.998 0.933

Yale-B Test 32 32 bit 0.998 0.024 0.996 0.954

Panshot Training 1 16 bit 0.987 0.051 – –

Panshot Training 1 32 bit 0.977 0.070 – –

Panshot Test 1 16 bit 0.909 0.163 0.754 0.892

Panshot Test 1 32 bit 0.907 0.164 0.748 0.885

Panshot Training 32 16 bit 0.999 0.012 – –

Panshot Training 32 32 bit 0.995 0.022 – –

Panshot Test 32 16 bit 0.990 0.054 0.792 0.992

Panshot Test 32 32 bit 0.993 0.053 0.797 0.999

Table 5: Face evaluation results for using a single face image in both the tem-
plate and the new recording and a total of 32 votes (e.g. 8 templates
and 4 new recording to compare to) for training and test partitions.

biometrics. Therefore, using the increased resolution of feature space
and model coefficients available with 32 bit SCs seems unnecessary,
as it primarily leads to an increased duration of our MOC approach
due to bigger amount of data transferred and processed.

5.5 summary

For mobile biometric user-to-device authentication we proposed to
train match-on-card (MOC) authentication models offline using ma-
chine learning. We use model types that feature a simple internal rep-
resentation once they are fully trained. To enable their usage on SCs,
we adapt and simplify both used features and models. The model
is computed only once using a dataset of the corresponding biomet-
rics, then stored on SCs of mobile devices. Enrollment on mobile de-
vices involves recording samples of the authorized user and storing
their feature vectors on SCs without requiring retraining the model.
Authentication compares features of newly recorded samples with
enrolled samples on the SC, using the previously stored model to
derive a binary authentication decision. One major advantage of the
proposed approach is that it is generic and can be applied on dif-
ferent biometrics alike, thereby facilitating the translation of mobile
biometric matching procedures towards MOC in general.

We applied our generic MOC authentication approach to accelera-
tion based mobile gait authentication as well as face authentication,
utilizing both 16 and 32 bit Java Card SCs. With gait authentication,
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when using 8 cycles in the enrolled template and 8 newly recorded
cycles for authentication, we found our approach to be feasible with
an EER of 11.4%. Authentication time on the SC stays in the range
of 2 s, including data transmissions and authentication computation.
To the best of our knowledge this work represents the first practical
approach towards acceleration based gait MOC authentication. With
face authentication, when using 8 face images in the enrolled tem-
plate and 4 newly recorded face images for authentication, we found
our approach to be feasible with an EER of 2.4-5.4% EER. The au-
thentication time on the SC thereby stays in the range of 1 s, again in-
cluding both transmission and calculation time on SCs. We argue the
durations of 2 respectively 1 s to be a reasonable trade-off between au-
thentication performance and delay, as responsiveness will usually be
more critical for face than gait authentication. This is because face au-
thentication can be performed actively, where users expect immediate
authentication results – while gait authentication is done as passive,
unobtrusive background authentication, therefore is less sensitive to
higher authentication latency. Using 16 instead of 32 bit SCs seems to
have little negative impact on authentication performance. From this
we derive that an adequate representation of samples and models is
possible in the more granular feature and model coefficient space on
16 bit SCs. Furthermore, using the higher resolution of information
of 32 bit SCs leads to more data being transferred and more compu-
tations on SCs, which overall make the approach slower than on 16

bit SCs.
To summarize, these results indicate that our generic mobile MOC

authentication approach is feasible and can be applied to different
biometrics on both 16 and 32 bit SCs. In the future, it might thereby
facilitate the transfer further mobile biometrics toward using MOC
techniques. This would further aid mobile authentication being unob-
trusive in different situations (using different biometrics suiting those
situations) – without exposing their user to the additional risk of dis-
closing their biometrics.





6
T R A N S F E R R I N G A U T H E N T I C AT I O N S TAT E S
B E T W E E N D E V I C E S B Y S H A K I N G T H E M
C O N J O I N T LY

In this chapter we highlight our token-based user-to-device authen-
tication approach which utilizes brief conjoint shaking of mobile de-
vices to transfer the authentication states between them (Fig. 10, b).
Parts of this chapter have previously been published in [106, 107].

Token-based authentication approaches in the mobile environment
that purely use proximity to derive an authentication decision have
the drawback of attackers possibly being able to unlock mobile de-
vices they got under their control just by being close to the user. For
example, with tokens relying on a distance derived from WiFi or Blue-
tooth signal strengths it might be sufficient for attackers to be in the
same room with the legitimate, inattentive user to successfully unlock
the device. As attackers are likely to be close to the user when obtain-
ing control over the mobile device, an immediate unlock would be
possible before leaving the scene. When using token-based authenti-
cation, the token needs to be brought by users everywhere they po-
tentially want to use their mobile device. Depending on where the
token is kept, it could be possible to obtain control over both token
and device at once and then use the token to unlock the device. If
the token itself is locked to prevent illegitimate usage in case of theft,
the whole problem is transfered from the mobile device to the token –
as unlocking the token itself again could be done using knowledge-,
biometrics- or token-based authentication.

To address these issues we propose a novel token-based mobile
device unlocking approach: transferring the authentication state be-
tween two devices by briefly shaking them conjointly. The key idea
is that personal mobile devices can remain unlocked for different pe-
riods of time, one could act as a token, allowing to transfer authen-
tication state between devices. For example, a mobile phone should
lock itself as soon as it is put aside while a smart watch could remain
unlocked as long as it is strapped to the wrist and automatically lock
itself when detached. The smart watch could e.g. be unlocked once in
the morning when attached to the wrist and automatically lock itself
when detached, utilizing e.g. heart-rate measurements like with the
Apple Watch1 or a simple connection in the strap that is triggered
by opening it. Using this setup, the authentication state from the un-
locked watch can be transferred to the locked phone to unlock it –

1 Apple Watch heart rate measurements: https://support.apple.com/en-us/

HT204666
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hence the unlocked device can serve as token for unlocking other
devices. Shaking both devices simultaneously with the same hand
serves as a fast, easy and secure trigger for authentication state trans-
fer. The authentication state transfer is only triggered after an analysis
of sensor time series recorded on both devices concludes that a) both
devices have been shaken simultaneously and b) both devices have
been shaken by the same person. For simplicity, from now on we will
refer to the device from which the authentication state is transferred
as token device where applicable.

Unlocking mobile devices by shaking them conjointly has notewor-
thy advantages over other unlocking approaches. Required user at-
tention is assumed to be lower compared to current unlocking ap-
proaches, as users only need one hand and are not required to look
at the devices to unlock them. In terms of speed we aim for 2 s of shak-
ing to transfer authentication states between devices to be comparable
to other unlocking mechanisms (cf. studies showing that mobile un-
locking duration ranges from 1.5 s for PIN entry to 3 s for graphical
patterns [150, 377]). We assume that 1–3 s can be considered an accept-
able unlocking delay for our scenario in terms of usability vs. security,
while requiring less user explicit attention. Shaking devices can be uti-
lized on a broad range of mobile devices nowadays as accelerometers
are a common feature of mobile phones, tablets and smart watches as
well as activity trackers and other wearable computing gadgets. Pre-
vious research on pairing mobile devices by shaking them conjointly
has stated shaking to be secure, as acceleration records are difficult
to forge by shaking devices bare handed [224], making it a suitable
choice for security critical applications2. We base ShakeUnlock on
these findings but focus on a different use case: transferring authenti-
cation states from a token device to another device to unlock it. Con-
sequently, the scenario presented here implies different approaches
towards security and usability with analyzing acceleration sensed on
both devices. Our work focuses on the technical aspect and security
implications of ShakeUnlock – and leaves a thorough evaluation of
usability and acceptance for future work, as such a study would need
to consider longitudinal effects of muscle memory/muscle learning
(users being able to perform movements without explicitly thinking
about them, like 10-finger-typing on a keyboard).

ShakeUnlock contributes to unobtrusive mobile authentication by
providing an additional unobtrusive authentication option for differ-
ent situations than addressed by existing approaches, that further
does not impose cognitive load on users, and that allows for authen-
tication with a duration in the range of 2 s. Summarizing, the contri-
butions of ShakeUnlock are:

2 Hypothetical attacks could involve e.g. high speed cameras and an apparatus to
precisely recreate visually observed shaking behaviors but are beyond the scope of
this work.



6.1 shaking mobile devices conjointly 93

• In contrast to previous research on shaking mobile devices con-
jointly to establish a secure channel between them, we focus on
shaking as a secure trigger mechanism to transfer authentica-
tion states from a token device to another device over a pre-
established secure channel.

• ShakeUnlock processes data from mobile devices situated 10-
15 cm apart from each other (mobile phone held in the hand,
smart watch strapped to the wrist) with the wrist as a non-static
joint in between, which implies differences in sensed accelera-
tion on both devices.

• Using this setup we record the ShakeUnlock database contain-
ing 3D acceleration and 3D gyroscope time series recordings
of mobile devices being shaken conjointly. We use this data to
parameterize and evaluate ShakeUnlock.

• We give detailed insight into the time series similarity data
analysis of ShakeUnlock. We evaluate the influence of shak-
ing devices while sitting/standing or using the dominant/non-
dominant hand, as well as the contribution of constituent parts
to the overall system performance. We believe that future ap-
proaches can benefit from these detailed insights and findings.

• We implement ShakeUnlock on Android and present a perfor-
mance study which evaluates three different attack scenarios.

6.1 shaking mobile devices conjointly

6.1.1 Previous Work on Analyzing Conjoint Movement of Mobile Devices

Analyzing movement and acceleration records for determining if mo-
bile devices were shaken together by the same body movement has
been subject of a significant body of research over the last 10 years.
Research ranges from analysis of simple movements with accelerom-
eter recordings (cf. [13, 146]) to deriving secret keys from acceleration
data (cf. [7, 30, 130, 180, 224, 310]).

With “Smart-Its Friends”, Holmquist et al. [155] have been amongst
the first to associate devices by shaking them together. Their devices
sense acceleration and broadcast it, so that other devices may decide
on pairing with them. Their approach purely focuses on pairing with-
out taking security aspects like Man-in-the-middle (MITM) or replay
attacks into account. In “Are You with Me?”, Lester et al. [198] have
built upon this work but use frequency domain based magnitude
squared coherence instead of time domain based analysis to pair de-
vices. Their approach has further been extended by Mayrhofer and
Gellersen in “Shake Well Before Use” [224] which additionally covers
security aspects of pairing devices by shaking them conjointly.
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“Shake Them Up” by Catelluccia and Mutaf [56] utilizes a related
idea, although it does not involve sensing acceleration. They mon-
itor WiFi received signal strength indication (RSSI) which is likely
to change when devices are moved/rotated. As devices are moved
together they experience similar changes in RSSI over time on the ba-
sis of which devices decide if they have been moved together. This
approach is designed with MITM protection in mind. However, it
depends on wireless signals and wireless signal strength sensing ca-
pabilities to be available on both devices.

The special aspect of shaking devices conjointly which are apart
from each other and have a non-static joint (e.g. the wrist) in between
was addressed by Fujinami and Pirttikangas [112] for associating ob-
jects with users. Amongst other things they consider toothbrushing
with sensors attached to the users hands and toothbrushes. Similarly,
Bao and Intille [20] have investigated activity recognition including
tooth brushing from 2D acceleration sensors and time domain fea-
tures. We deal with the same complicating issues for robust accelera-
tion time series comparison due to having a non-static joint between
devices, which will cause devices to sense slightly different accelera-
tion during shaking. Additionally, we have to consider security impli-
cations of attackers trying to forge acceleration patterns to get access
to obtained devices.

In terms of data analysis, shared movement and shaking has been
analyzed in both time and frequency domain. For in depth compari-
son we refer to [76, 77] as well as related research from the field of ac-
tivity recognition (cf. [11, 96, 158]). Although analysis in time domain
seems to be capable of yielding higher entropy [130], analysis in fre-
quency domain seems more resistant to synchronization issues [198].
In ShakeUnlock, devices independently record acceleration and de-
cide if they are currently shaken. Devices will sense slightly differ-
ent acceleration due to the non-static joint in between them, hence
detect active shaking at slightly different points in time. As we can-
not assume exact synchronization between devices we use frequency
based analysis. So far the most successful analysis approach is using
frequency-domain based magnitude squared coherence [363], which
has been used in various previous studies (cf. [28, 70, 131, 198, 220,
224]) and which is utilized in ShakeUnlock as well.

6.1.2 Implications of Shaking on Security

In 2011, Studer et al. [324] proved the well known and by now dis-
continued mobile phone application “Bump”3 to be insecure. With
“Bump” and similar approaches such as simultaneously pressing a
button on both devices (cf. [146, 283, 318]) correct timing is the only
critical aspect to establish a channel between devices. As timing can-

3 See http://bu.mp

http://bu.mp
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not be assumed secret, attackers can easily perform MITM attacks by
forging required information and communicating them with correct
timing. Instead of using timing constraints we utilize shaking to trig-
ger the transfer of authentication state from the token device to other
devices. Consequently, resistance against forged shaking patterns is
required to prevent attackers from triggering an authentication state
transfer without being in control of both devices at the same time.

Most previous research on shaking mobile devices conjointly in
the scope of security aim to establish a secure channel between de-
vices [30, 130, 224, 225, 227] (also known as bootstrapping or hu-
man verifiable authentication problem [67]). In contrast to these ap-
proaches we study shaking as trigger mechanism to transfer an au-
thentication states from the token device to other devices over an
pre-established secure channel.

6.2 threat model

We want to emphasize that a) a user in control of the unlocked to-
ken device and the locked phone is intentionally able to trigger the
authentication state transfer to unlock the phone, as no biometric au-
thentication is performed. b) the authentication state transfer is trig-
gered if – and only if – the token device is unlocked and the phone
is locked when both devices are shaken conjointly, which renders be-
ing in control of the locked token device and phone insufficient for
attacks. Consequently, access protection for the token device is re-
quired. As discussed before, when assuming that users attach their
locked token device to their wrist once a day, then unlock it (e.g. in
the morning), the token device can stay unlocked until users lock it
manually or it is detached from the wrist. Compared to access to an
unlocked phone or regular authentication token not featuring a lock-
ing mechanism, we argue that this brings an increased level of access
protection to the unlocked token device:

• It is more difficult for the token device to be lost or stolen, as it
is attached to the user’s wrist.

• For attackers it is more difficult to obtain/access to the unlocked
token device, as it automatically locks itself when detached
from the wrist and accessing it in an unlocked state therefore
would require accessing it before detaching it from users wrist,
which is unlikely to go unnoticed.

For our scenario we therefore assume the token device to be secure
and restrict addressed attack scenarios to the locked phone being un-
der control of an attacker. We further assume that the token device
is unlocked, as otherwise no authentication state transfer can be trig-
gered.
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6.2.1 Attack Scenarios

For all attack scenarios, the locked mobile phone is considered to be
under physical control of an attacker trying to unlock it unnoticed by
legitimate users who control the token device. To trigger an authen-
tication state transfer from the unlocked token device to the phone,
simultaneous shaking of both devices is required. This implies the
legitimate user also has to shake the token device, which is why an
attacker must synchronize any attack attempts with the user’s shak-
ing of the token device. We address four such attack scenarios with
different attacker capabilities:

Minimal effort attacks assume that users have been tricked into ac-
cepting a proxy device as their own and subsequently try to unlock
it by shaking it conjointly with the token device. Attackers simulta-
neously shake the target device they control but without trying to
mimic the shaking pattern of users. Note that we use the term “min-
imal effort” because attackers do not take additional effort such as
imitating users’ shaking behavior. Sophisticated preparation, e.g. ob-
taining control over the device beforehand and tricking users into
taking a different device for their own, is still required for this kind
of attack. Being resistant against minimal effort attacks means being
resistant against two people separately shaking both devices at the
same time to trigger an authentication state transfer.

Observatory attacks use the same setup as minimal effort attacks,
but attackers are observing the legitimate users and attempt to syn-
chronously mimic the users’ shaking patter to unlock the device, with-
out the legitimate users noticing.

Cooperative attacks allow any cooperation between user and attacker
except touching each other or the other’s device in order to achieve
high similarity in shaking patterns. This attack is supposed to break
the approach and serve as measure of upper boundary to the secu-
rity achieved, as in terms of authentication it is both unrealistic and
harder than both previous attacks.

Handshake attacks assume attackers strap the mobile phone to their
wrist using a bandage (Fig. 19). Then users and attackers shake hands
hard to achieve synchronized acceleration records on both devices.
This requires the hand to which wrist the token is attached to be used
for the handshake. As with cooperative attacks, handshake attacks
are supposed to break the approach. In a real life scenario, attackers
shaking users’ hands as hard as required to trigger recording of con-
tinuous 2 s shaking would be unrealistic, as it is far from natural and
would make users suspicious.
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(a) (b)

Figure 19: Possible handshake attack setup with (a) the mobile phone be-
ing strapped to the attacker’s wrist and (b) attacker shaking the
user’s hand hard.

6.2.2 Attack Evaluation

From security perspective, evaluating these attacks scenarios could
be done with a one-to-one matching of data aggregated from de-
vices both shaken and not shaken conjointly. These can be used to
state a) success rates of legitimately triggering authentication state
transfer (true positive rates) and b) attack success rates (false positive
rates). From a system parametrization perspective, a larger number
of samples is required to obtain suitable distinguishing capabilities.
We therefore use m-to-n matching of uncorrelated shaking samples
in our data set to simulate minimal effort attacks which we use in
turn to parameterize ShakeUnlock (Sec. 6.5). To evaluate the remain-
ing three attack scenarios we use an implementation of the proposed
concept on off-the-shelf Android devices with one-to-one matching
of live data (Sec. 6.6).

6.3 authentication state transfer by shaking devices

conjointly

ShakeUnlock is split into two major steps: separately sampling accel-
eration on both devices and deciding upon triggering an authentica-
tion transfer between devices on one device (Fig. 20). The first step
consists of monitoring acceleration, deciding if the device is shaken,
and extracting an active shaking acceleration segment (active segment)
independently on both devices. If active segments have been detected,
both are aggregated on one device. In the second step the similarity of
active segments is determined to decide if devices have been shaken
conjointly and thus an authentication state transfer should be trig-
gered. Note that in contrast to related approaches, no acceleration
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Figure 20: Data processing chain used in the ShakeUnlock approach.

data is stored on the devices – not even in the form of cryptographic
keys or hashes.

6.3.1 Active Segment Detection

In ShakeUnlock devices continuously and separately monitor acceler-
ation, which can be done without excessive draining of battery power
by utilizing hardware dedicated to acceleration recording. Such hard-
ware is already becoming available in off-the-shelf mobile devices,
such as for background step counting in the Apple iPhone5, iPhone6

and Apple Watch, Samsung Galaxy S5 or Sony Xperia Z1(c)-Z3(c) de-
vices. As shaking is detected, the power efficient hardware can e.g.
power on the main CPU which then performs the computationally
more expensive networking and time series comparisons tasks.

ShakeUnlock determines the start of an active segment by monitor-
ing the variance of the acceleration magnitude of the 3D acceleration
sensor in a sliding window as described in [224]. If the variance of
acceleration within this window rises above a certain threshold, this
marks the start of an active segment from which acceleration on 3

axes is recorded for a short duration, capturing the shaking of the de-
vice. For our evaluation and implementation we use an acceleration
monitoring sliding window of 2 s, an acceleration variance threshold
of 6 · 10−4m

s2
and record active segments of 2 s length after shaking is

detected. If users prematurely stop shaking (i.e. active segment < 2 s),
no authentication state transfer will be triggered.

After active segments have been detected and recorded separately
on both devices, we aggregate them on one device. Data aggregation
could be done on each of the devices, as both are assumed secure
and connected via a secured channel. However, when transferring the
authentication state from the watch (token) to the phone, data aggre-
gation on the phone has the following advantages: a) Usually, mobile
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(a) Active segment detected on mobile
phone
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(b) Active segment detected on wrist
watch

Figure 21: Active segments detected independently on the mobile phone
and wrist watch.

phones have higher computational power than smart watches, hence
the decision on performing the authentication state transfer will be
obtained faster. b) If we conclude to perform the authentication state
transfer from watch to phone based on recorded active segments, no
further data transfer between devices is required, as the decision is
done on the phone already.

6.3.2 Authentication Transfer Decision

After active segments have been recorded on both devices individu-
ally and aggregated on one device, we analyze those active segments
to determine if devices have actually been shaken conjointly. If so,
we perform an authentication state transfer between devices to un-
lock the device still locked. Before performing the actual similarity
analysis, we preprocess the two active segments. We compensate for
gravity recorded within the active segments by subtracting the mean
acceleration per axis throughout the active segment.

Our similarity analysis takes a pair of active segments as input and
yields a scalar metric value as output. If this metric value is above
a reference threshold, we conclude that active segments represent
devices shaken conjointly, therefore trigger the authentication state
transfer and unlock the locked device. If the metric value is below the
predefined threshold, we conclude that active segments represent de-
vices not shaken conjointly, therefore refuse the authentication state
transfer and do not unlock the device. Our similarity analysis con-
sists of different constituent parts, which we present and discuss in
Sec. 6.5.
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6.4 evaluation data : the shakeunlock database

We recorded the ShakeUnlock database4 which consists of 29 partic-
ipants shaking a wrist watch (strapped to their wrist) and mobile
phone (held in the hand). For each participant, we recorded 5 shak-
ing samples each for four different setups (Tab. 6), which results in
20 samples per participant and device, and to 1160 samples in total –
which overall reflect large differences in shaking style, vigor, and fre-
quency.

Setup Watch Phone Posture

1 left wrist left hand sitting

2 right wrist right hand sitting

3 left wrist left hand standing

4 right wrist right hand standing

Table 6: The u’smile ShakeUnlock database features 5 samples for each 4

different setups per participant.

For data collection, we used an Android application recording 3

axes accelerometer time series and storing them in the form of comma
separated value files locally on each device. The devices are con-
nected over a Bluetooth channel, sending start/stop recording instruc-
tions as well as experiment metadata (e.g. subject ID) in a synchro-
nized fashion when starting/stopping data recording. We explicitly
note that this synchronization is only facilitating an easier experiment,
but that it is not required for real-world use outside the recording
setup.

Before data recording, participants strapped the watch to their wrist
and grabbed the phone with the same hand (Fig. 22). Immediately
before starting data recording, all participants were given the same,
brief instructions: “Shake the devices as you would shake them intu-
itively, but shake them a bit harder/a bit quicker and try to not bend
your wrist while shaking.”.

Each recording has a total length of 13 s: 10 s of active shaking and
3 s of neutral device movement. Participants started the recording by
pressing a button on the mobile phone and started shaking. They
were informed to stop shaking by audio and vibration feedback from
the phone after 10 s of recording (therefore active shaking is close to
10 s for most samples) – with the devices continuing to record for 3 s
after the notification.

In total we recorded data from 25 male and 4 female participants,
with an average age of 27 years and from different backgrounds and
professions (we do not distinguish by profession, age or gender as
it does not seem important for performing a simple shaking move-
ment). Further we used a mix of different devices running Android

4 The ShakeUnlock database is publicly available for download at http://usmile.at/
downloads.

http://usmile.at/downloads
http://usmile.at/downloads
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(a) Front side (b) Rear side

Figure 22: Phone and watch placement for all setups, with the watch be-
ing strapped just as hard as necessary to prevent slipping during
shaking.

Pair of devices Male Female Total

Galaxy S4, Galaxy Gear 23 3 26

Moto G, Simvalley watch 2 1 3

Table 7: Amount of recordings done per pair of devices and gender of par-
ticipants.

4.0 or above (Tab. 7). For 26 participants we used a Samsung Galaxy
S4 mobile phone (model GT-I9500) together with a Samsung Galaxy
Gear wrist watch (model SMV700). For the remaining 3 participants
we used a Moto G mobile phone (XT1032) together with a Simvalley
Mobile wrist watch (model AW-420.RX) to analyze how dependent
various parameters of the data analysis pipeline are on the specific
recording hardware. The recording acceleration sensor sampling rate
was fixed on operating system side to 100 Hz. Therefore, any inac-
curacies in sample timing are caused by the operating system itself
and would also occur in implementations of ShakeUnlock on other
platforms.

6.5 active segment similarity analysis

Previously Mayrhofer and Gellersen [224] showed that it is feasible to
detect if devices – which are pressed against each other – have been
shaken conjointly using magnitude squared coherence on accelera-
tion time series magnitudes. We adapt this method in order to apply
it to acceleration time series magnitudes of devices somewhat apart
and with non-static joint in between during shaking. Our approach
thereby incorporates different preprocessing and parametrization. It
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further incorporates what we refer to at constituent parts of Shake-
Unlock: additional derotation of 3D time series before performing
the similarity analysis, bandpass filtering, a different collapsing func-
tion, and optimal weighting of individual frequencies. In this section
we at first evaluate the impact of shaking devices for different dura-
tions as well as shaking devices when standing/sitting or using the
dominant/non-dominant hand. We further evaluate the influence of
each constituent part of our proposed approach on the overall per-
formance. Thereby obtained performance comparisons are stated in
Sec. 6.5.9.

6.5.1 Parametrization and Evaluation Data Partitioning

We parametrize and evaluate ShakeUnlock using acceleration data
from the ShakeUnlock database on the basis of a) devices being shaken
conjointly and b) simulated minimal effort attacks. Other attack sce-
narios are not based on this but use separately recorded data (Sec. 6.6).
We at first extract active segments (Sec. 6.3) for all these samples
which simulate users shaking their devices to transfer the authenti-
cation state. We then use active segments from all 580 time series
pairs of devices shaken conjointly as legitimate tries to trigger au-
thentication state transfer between devices. Therefore, our positive
class P is of size 580. To simulate minimal effort attacks we use all
580 · 579 = 335 820 combinations of time series obtained from not
shaking devices conjointly as our negative class N. Note that we ex-
clude pairs of same type of devices (two mobile phones as well as
two smart watches) as these scenarios are not realistic in real life.
The resulting data sets for the P and N class are used to evaluate
the performance of the subsequently described constituent parts of
ShakeUnlock.

6.5.2 Performance Measures

As the sizes of our P and N class differ notably, some performance
measures like accuracy are not significant [200]. We therefore rely on
a number of well known and more significant metrics in our eval-
uation. The true positive rate (TPR) represents the ratio of correctly
identified cases of users trying to trigger an authentication state trans-
fer with devices being shaken conjointly (P class samples). Likewise,
the true negative rate (TNR) represents the ratio of correctly iden-
tified cases of minimal effort attacks, with devices not being shaken
conjointly (N class samples). We obtain the TPR and TNR for all possi-
ble metric thresholds, from which we construct the receiver operating
characteristics (ROC) and the area under the ROC curve (AUC). Both
ROC and AUC capture the overall performance instead of stating
the performance at a specific metric threshold. The equal error rate
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(EER) states the error for TPR = TNR, representing the intersection
between the ROC curve and the diagonal from TPR = TNR = 1 to
TPR = TNR = 0.

6.5.3 Magnitude Squared Coherence with Acceleration Time Series Mag-

nitudes

With magnitude squared coherence [363] the time series x and y are
divided into n overlapping slices (Fig. 23). Each slice is multiplied
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Figure 23: Active segment similarity analysis in ShakeUnlock.

with a weighting window (such as a Hann or Hamming window).
We use slices of 7

8
overlap and 1 s duration (with 100 Hz sampling

rate this corresponds to slice and window lengths of 100 samples),
and a Hann weighting window as proposed in [224]. Next, all slices
are transformed into the frequency domain by applying a standard
fast Fourier transformation (FFT) with 1 s window size. For each pair
of corresponding slices from x and y, the coherence vector Cxy,n(f)

is calculated from the power spectral densities Sxx,n and Syy,n and
the cross spectral density Sxy,n (Eq. 12). Then, all n coherence vectors
Cxy,n(f) are averaged to the single coherence vector Cxy(f) (Eq. 13).

Cxy,n(f) =
|Sxy,n|

2

Sxx,n · Syy,n
(12)

Cxy(f) =
1

n
·
∑

n

Cxy,n(f) (13)

Finally, a scalar metric value Cxy is obtained from Cxy(f) using a
collapsing function (Eq. 14).

Cxy = Col(Cxy(f)) (14)

This metric value Cxy is interpreted as confidence that devices have
actually been shaken conjointly while recording x and y. Hence, if
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Cxy > T , with T being a predefined metric threshold, we transfer the
authentication state and unlock the device. If Cxy < T we refuse to
transfer the authentication state, leaving the device locked. We apply
the method as summarized above on the time series magnitudes of
the two active segments x and y. Using the magnitude acceleration
time series is done frequently to compensate for unknown spatial
alignment of accelerometers. Thereby, time series magnitudes are cal-
culated from the L2-norm of the active segment 3D acceleration time
series. As collapsing function Col we average the coherence vector
Cxy(f) up to a cutoff frequency of 40 Hz (Eq. 15).

Cxy =
1

41
·

40Hz
∑

f=0Hz

Cxy(f) (15)

Using only magnitude squared coherence with acceleration time se-
ries magnitudes, we obtain an AUC of 0.8990 and an EER of 0.1777.

6.5.3.1 Impact of Shaking Duration and Devices Being Apart From Each

Other

Results show that increasing shaking durations decreases overall er-
ror rates – for devices being held in the hand and strapped to the
wrist, as well as devices being pressed against each other (Fig. 24).

T
P
R

FPR

(a) Devices at hand and wrist

T
P
R

FPR

(b) Devices pressed against each other

Figure 24: ROC curves for different durations of users shaking their device,
with (a) the devices being strapped to the wrist and held in the
hand using ShakeUnlock data and (b) being pressed against each
other in one hand using the database of [224].

Using a shaking duration of 2 s – which we assume is just short
enough for users to consider shaking as an unlocking approach – we
obtained an EER of 0.176 and a TPR/TNR of 0.795 and 0.867, respec-
tively. These rates assume that both devices are shaken concurrently.
Consequently, attackers trying to unlock the mobile phone which they
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previously got under their control have to perform this attack in par-
allel to users shaking their wrist watch accordingly. Further, the un-
locking security level can easily be raised for users willing to shake
their device longer (which could be chosen per user and application
individually).

Using data of devices being pressed against each other for 2 s of
shaking, we obtain an EER of 0.100 and a TPR/TNR of 0.885 and
0.925, respectively (Fig. 24b) – which is observably better over devices
being apart form each other. These results support the intuition that
the closer devices are together, the harder it is for an attacker to trick
the approach into unlocking the mobile phone using non-correlated
shaking. Furthermore, this suggests that an attacker being able to
attach an acceleration sensor at the user (e.g. in clothing) will not be
able to make immediate use of recorded acceleration data, except for
when the acceleration sensor is very close to the wrist or hand, as the
recordings will differ too much from the actual device acceleration.

Mayrhofer and Gellersen [224] report a TPR and TNR of 0.99 and
1, respectively, when employing the shake well before use database.
These differences to our current findings are caused by utilizing a dif-
ferent threat model and differently sized negative classes CN (time
series used to compute the TNR). To obtain the TNR, the earlier eval-
uation uses a small dataset of 177× 2 time series recorded by shaking
devices simultaneously, but not with the same hand. Based on the
resulting 177 time series comparisons, the TNR is computed. In con-
trast, in our evaluation we utilize the same dataset to obtain the TNR
as well as the TPR: we compare all time series not recorded by shak-
ing devices simultaneously with the same hand to compute the TNR.

6.5.3.2 Impact of Sitting/Standing and Shaking with the Dominant/Non-

Dominant Hand

Figure 25 shows the impact of shaking devices with the dominant and
the non-dominant hand as well as sitting or standing while shaking
the devices based on our database.

It is clearly visible that shaking devices with the dominant hand
(represented by the brighter lines in the left graph) with an EER of
0.168 and a TPR/TNR of 0.811/0.870 for 2 s of shaking consistently
causes lower error rates compared to shaking devices with the non-
dominant hand (represented by the darker lines) with an EER of 0.184

and a TPR/TNR of 0.779/0.863. We assume this to be the result of
users shaking the devices slightly harder and/or faster as well as
keeping the wrist more stiff – therefore causing more similar accel-
eration time series on both devices. Similar to using the dominant
or non-dominant hand, sitting while shaking devices seems to cause
slightly lower error rates compared to standing – with sitting (rep-
resented by the brighter lines in the right graph) causing an EER of
0.176 and a TPR/TNR of 0.806/0.866 for 2 s of shaking compared to
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Figure 25: Devices being shaken for different durations with (a) the non-
dominant hand (dark) and with the dominant hand (bright) as
well as (b) when standing (bright) and sitting (dark).

standing (represented by the darker lines) causing an EER of 0.177

and a TPR/TNR of 0.818/0.828.
To summarize these first findings: we applied magnitude squared

coherence as demonstrated in [224] to data of devices somewhat apart
and with non-static joint in between during shaking. Our findings
support the intuition that increasing the shaking duration improves
accuracy when assessing whether devices have been shaking con-
jointly, but obviously impair usability as the effort increases. Our find-
ings further show that shaking devices with the dominant instead of
the non-dominant hand or while standing instead of sitting results in
slightly better accuracies, but overall has little impact. From those re-
sults we derive a shaking duration of 2 s to be a reasonable trade-off
between usability and security. Consequently, for the subsequent eval-
uation of the constituent parts of ShakeUnlock we restrict ourselves
to a shaking duration of 2 s. We therefore use active segments of 2 s
duration per time series recording. Active segments shorter than 2 s
are excluded from further analysis, as this simulates users not shak-
ing their devices long enough.

6.5.4 Optimal Time Series Derotation

Most research on shared movement using records of 3D acceleration
time series from mobile devices has focused on comparing acceler-
ation magnitudes. This is because in general both the orientation
of devices potentially moved together as well as the orientation of
accelerometers within those devices is unknown. Unknown sensor
orientation leads to axes of recorded time series not being spatially
aligned, meaning they cannot directly be compared to each other. By
calculating the magnitude this problem is circumvented, as magni-
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tudes do not capture orientation information – thereby can directly
be compared, even with unknown orientation of devices and sensors.
This also causes the downside that not using orientation for compar-
ing acceleration time series between different devices implies losing
some potentially important information in the form of rotational com-
ponents during the movement.

To allow for a meaningful comparison of two 3D time series in all
their dimensions, the coordinate system of one 3D time series has to
be derotated to suit the coordinate system of the other. This requires
that both coordinate systems have retained their relative orientation
throughout the shared movement of the devices (i.e. that rotations
have been applied to both devices alike).

We have shown previously that a quaternion based approach can
be used to analytically find the optimal derotation of two 3D time se-
ries, and that this improves the subsequent EER with various distance
metrics [229, 230].

We now apply this quaternion based derotation as one constituent
part of ShakeUnlock with the goal of improving overall authentica-
tion accuracy. Optimal derotation of two acceleration time series of
devices being shaken can even be observed visually (Fig. 26, samples
are taken from the ShakeUnlock database). As both samples are orig-
inated from devices actually being shaken together, the similarity be-
tween their time series is intended. This is well visible when compar-
ing the time series magnitudes of both samples (Fig. 26a). Still, there
are well observable differences between both samples when compar-
ing individual axes – which originate from different orientation of
devices and built in sensors (Fig. 26, left column). While the phase
and periodicity of both samples seems to be comparable, the actual
acceleration readings differ noticeably throughout the sample dura-
tion. Optimal derotation of one of the two samples results in better
alignment of data of individual axes – which is visible in actual ac-
celeration readings differing noticeably less than before derotation
(Fig. 26, right column, with the sample of device 1 being derotated to
match the sample of device 2).

When applying optimal derotation to our evaluation, Fig. 27 states
the coherence density over frequency for the P and N class for apply-
ing coherence on magnitudes as well as on all axes of previously dero-
tated time series. Brighter areas represent lower coherence, darker ar-
eas represent higher coherence. Coherence is observably more dense
for the P class when derotating time series before computing coher-
ence instead of computing the series magnitudes (Fig. 27a and 27b).
In contrast, the density for the N class is only marginally influenced
by derotating time series before computing coherence by being slightly
higher on average (Fig. 27c and 27d). This is to be expected, as corre-
lated time series initially are rotated arbitrarily but intentionally con-
tain similarity – which causes derotated time series to show notice-
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(a) Magnitudes of device 1 and 2

(b) Axis 1 without derotation (c) Axis 1 with derotation

(d) Axis 2 without derotation (e) Axis 2 with derotation

(f) Axis 3 without derotation (g) Axis 3 with derotation

Figure 26: Sample 3D acceleration time series for two mobile devices being
shaken together, depicted by their magnitudes (a) and by their
individual axes without derotation (b, d, f) and with derotation
(c, e, g), as demonstrated in [230].
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ably higher similarity. In contrast, initially not correlated time series
only have little coincidental similarity. Optimally rotating them there-
fore only causes an insignificant raise in similarity. This data suggests
that for frequencies showing condensed coherence values, derotation
of time series will improve class separation performance – which is
supported by evaluation results stated below as well.

(a) P, no derotation (b) P, derotation

(c) N, no derotation (d) N, derotation

Figure 27: Coherence densities per frequnecy of P and N class without and
with time series derotation.

In contrast to comparing time series magnitudes we instead com-
pute coherence for each pair of axes (which have been aligned through
derotation). Therefore, coherence computation yields three separate
coherence vectors, one per (aligned) pair of axes. Each coherence vec-
tor represents the frequency range 0-50 Hz for 100 Hz sampling in
data recording. Hence, all successive operations (e.g. filtering frequen-
cies by applying a 0-20Hz bandpass) have to be applied to these three
coherence vectors individually. We apply the previously used 40 Hz
cutoff to the coherence vectors, then average them to obtain a final,
scalar coherence value. By adding initial time series derotation to our
evaluation setup, we obtain an AUC of 0.9214 and an EER of 0.1562.

6.5.5 Coherence Frequency Bandpass

Overall, research on human body motion states quite different motion
frequencies to usefully represent motion information. For example, in
Biomechanics and Motor Control of Human Movement, Winter [368]
states human body motion is in general represented by a frequency
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range of about 0-10 Hz. In contrast, e.g. Bouten et al. [40] find fre-
quencies up to 20 Hz being useful to represent human movement
during everyday activities. They further state that body movement
of e.g. limbs is usually faster, compared to movement of torso and
hip, whereas shaking mobile devices with the hand corresponds to
the mentioned faster movements.

In their research on shaking devices conjointly, Lester et al. [198]
pick up the frequency range of 0-10 Hz stated by Winter [368]. They
average coherence in the range of 0-10 Hz to come up with a scalar
similarity value. In contrast, Mayrhofer and Gellersen [224] average
coherence in the range of 0-40 Hz to determine if devices were shaken
conjointly without stating details on how this cutoff frequency was
determined. It can be assumed that results from using a coherence
range of 0-40 Hz were superior to results from using a range of only
0-10 Hz for their approach, for which the wider frequency range was
used. To determine the optimal coherence frequency range we explic-
itly study the influence of different bandpass filters to classification
performance.

As shown in the coherence distribution over frequency (Fig. 27),
coherence is unequally distributed over frequency in the ShakeUn-
lock database. Overall, coherence is less dense as well as less diverse
across P and N class for higher frequencies, compared to lower fre-
quencies, although the lowest frequencies in the range of 0-2 Hz are
less dense and less diverse across classes as well.

In order to utilize the best performing coherence frequency range
in ShakeUnlock, we apply a bandpass to coherence frequencies be-
fore successively computing a scalar similarity value from the coher-
ence vector. For real world applications and from an implementation
point of view, using a bandpass has several advantages over more
complex approaches of restricting the frequency range. Using a band-
pass is intuitive and easy to understand. Further, it is fast and easy to
implement and of small complexity. In our bandpass evaluation, fL
represents the lower frequency threshold, hence the lowest coherence
frequency included during successive processing. Likewise, fH repre-
sents the upper frequency threshold. The frequency bandpass perfor-
mance (Fig. 28) states AUC over pairs of fL and fH, with darker areas
representing higher AUC values, therefore better performance.

Note that with our setup, performance decreases notably when in-
creasing fL, while changes of fH seem to have significantly less influ-
ence on performance. On the one hand, this indicates that the most
important portion of information is contained in lower frequencies,
and that higher frequency information is less reliable – which is in
support of findings from previous research. If these lower frequencies
are excluded, performance decreases significantly. On the other hand,
including frequencies up to about 20 Hz can improve performance,
which is different to what previous research would suggest [368].
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(a) On magnitude data (b) On derotated data

Figure 28: Coherence bandpass performance (AUC per bandpass filter set-
ting) when applied without (a) and with derotation of time series
(b). Note that left and right brightness scaling is differently to
increase distinguishability.
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With applying a bandpass to coherence frequencies from magni-
tudes of acceleration time series, performance peaks at fL = 1Hz
(skipping the 0 Hz constant component) and fH = 16Hz, with an
AUC of 0.9315 and an EER of 0.1418. When combining the band-
pass with initially derotating time series, peak performance is reached
with consistent fL = 1Hz and a slightly higher fH = 18Hz, with an
AUC of 0.9469 and an EER of 0.1293. These results point out that co-
herence frequency range noticeably influences overall performance –
and therefore should be selected carefully. In comparison to other
constituent parts of ShakeUnlock using a coherence frequency band-
pass turns out to hold the highest performance gain – while being
amongst those easiest to implement.

6.5.6 Coherence Frequency Collapsing Function

In previous research on shaking devices conjointly, collapsing a co-
herence vector to a scalar coherence value has only been done by av-
eraging coherence. To collapse a coherence vector, other functions are
possible as well, with some of them being frequently used in other dis-
ciplines. We evaluate the following collapsing functions for obtaining
a scalar similarity value from coherence vectors: sum (average), me-
dian, max, euclidean distance de, and square root distance ds. Square
root distance (Eq. 16) is the counterpart to euclidean distance (Eq. 17),
by inversing the order of squaring and taking the square root. Addi-
tional functions such as min turned out to cause significantly worse
performance in preliminary tests and therefore were disregarded in
this evaluation.

ds(v) =

(

∑

i

√
vi

)2

(16)

de(v) = ‖v‖ =

√

∑

i

vi2 (17)

Performance comparisons (Fig. 29) show euclidean distance slightly
outperforms averaging as well as all other tested functions when used
to collapse coherence vectors to a scalar similarity value for both time
series magnitudes as well as initially derotated time series.

When applying euclidean distance as the best performing collaps-
ing function to coherence obtained from time series magnitudes, we
obtain an AUC of 0.9023 and an EER of 0.1670. In contrast, when
applying euclidean distance as collapsing function conjointly with
initially derotating time series and using a coherence frequency band-
pass filter we obtain slightly reduced performance, with an AUC of
0.9464 and an EER of 0.1293.

On the one hand, these findings indicate that obtaining a scalar
coherence value from a coherence vector might be improved by con-
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(a) Time series magnitudes (b) Derotated time series

Figure 29: Influence of coherence vector collapsing functions on overall per-
formance using (a) time series magnitudes and (b) initially dero-
tated time series.

sidering not only the mean, but alternative collapsing functions such
as euclidean distance. On the other hand, when used with other con-
stituent parts of ShakeUnlock the performance gain is minor (or as in
our case, performance even decreased slightly).

6.5.7 Optimal Coherence Threshold per Frequency

6.5.7.1 Determining Optimal Coherence Thresholds

After deriving a scalar similarity value from a coherence vector (ob-
tained from two acceleration time series of devices shaken conjointly)
usually one fixed threshold is used to separate the P and N class,
as reported by Lester et al. [198] and Mayrhofer and Gellersen [224].
Using a single coherence threshold has a significant drawback: all fre-
quencies are combined within one scalar value, therefore the thresh-
old can only address all frequencies at once. Another approach is
to use an individual and independent threshold for each coherence
frequency. Each such threshold represents the optimal separation be-
tween P and N class for that coherence frequency – hence provides
better class separation on individual frequency level. Optimal thresh-
olds differ when derived from either time series magnitudes or from
initially derotated time series as derotation changes coherence values
(see example in Fig. 30). Fig. 31 states the optimal coherence thresh-
old per frequency for using time series magnitudes as well as for
incorporating initial time series derotation.
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Figure 30: True positive and true negative rate over coherence threshold for
3 Hz. Match rates as well as coherence values themselves for 3 Hz
are higher with derotation than with time series magnitudes.

Figure 31: Optimal coherence thresholds per frequency.
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6.5.7.2 Using Optimal Coherence Thresholds

Next, we determine if a coherence vector Cxy(f) obtained by shak-
ing device x and y corresponds to the P or N class using the optimal
coherence thresholds Co(f). We have explored two ways of doing so:
using a) a majority vote and b) the distances from the optimal thresh-
olds. With the majority vote, we utilize the amount of frequencies
being above their corresponding optimal threshold. If that amount is
above another predefined threshold, the sample is classified as pos-
itive (shaken conjointly). If it is below the threshold, it is classified
as negative (not shaken conjointly). In preliminary tests, the majority
vote turned out to perform slightly worse than averaging the coher-
ence vector.

We therefore incorporate the distance dxy(f) from optimal coher-
ence thresholds Co(f) to coherence vector Cxy(f) as well (Eg. 18).
Its fundamental idea is that certainty rises with the distance to the
corresponding optimal threshold. The larger the distance of a coher-
ence value to its corresponding threshold, the higher the certainty
that it belongs to the P respectively N class. To obtain a scalar simi-
larity value from dxy(f), a collapsing function is required again. As
with the previous collapsing functions evaluation (Sec. 6.5.6), once
more euclidean distance slightly outperformed averaging the vector
as well as all other collapsing functions (Eq. 19). Note that standard
euclidean distance is not applicable anymore as it eliminates the sign
for individual distances. We therefore use a signed euclidean distance
des(v) which preserves the sign of its components (Eq. 20 and 21).

dxy(f) = Cxy(f) −Co(f) (18)

dxy = des(dxy(f)) (19)

des(v) = a(v)0 ·
√

abs(a(v)) (20)

a(v) =
∑

i

vi · abs(vi) (21)

When incorporating the distance to the optimal coherence thresh-
olds and signed euclidean distance collapsing with coherence ob-
tained from time series magnitudes, we obtain an AUC of 0.9056 and
an EER of 0.1724. When instead using it with initially derotated time
series and using a coherence frequency bandpass filter, we obtain an
AUC of 0.9495 and an EER of 0.1257.

6.5.8 Coherence Frequency Weighting

6.5.8.1 Weighting Frequencies Individually

The coherence density over frequency (Fig. 27) shows that coherence
is denser for lower frequencies, with P and N class being visually
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more separated than with higher frequencies. Consequently, lower
frequencies will yield better class separation performance than higher
frequencies. Performances measures from classifiers using only a sin-
gle coherence frequency to separate P and N class support this in-
tuition with lower frequencies in general yielding better results than
higher frequencies (Fig. 32).

Figure 32: AUC of classifiers using a single frequency with and without
derotation.

Note that without derotation (using time series magnitudes), the
best performing frequency is 5 Hz. With derotating time series, the
best performing frequency is shifted to 3 Hz. This is a side effect of
derotation, which uses the largest eigenvector of the quaternion rota-
tion matrix (obtained from the time series correlation matrix). Obvi-
ously, derotation favors 3 Hz alignment which indicates that optimal
derotation can be achieved when aligning time series around that fre-
quency. The dominant frequency seems to be 3 Hz when derotation
shaking acceleration time series. Although the majority of AUC val-
ues is lower with using time series derotation, overall performance
is better with using derotation (Sec. 6.5.4). This indicates that the
performance gain through best aligning lower frequencies (increas-
ing their corresponding performance) is higher than the performance
loss through concurrently decreasing higher frequency performance.
This underlines the importance of lower frequencies for separating P

and N class (note the strong performance gain for 2 and 3 Hz). More-
over, this is in line with our previous finding of the best performing
bandpass covering a narrower range of 1-18 Hz respectively 1-16 Hz,
discarding higher frequencies.

From these insights it can be concluded that individually weight-
ing coherence frequencies (e.g. based on their class separation power)
when obtaining a scalar similarity value should improve results. The
coherence frequency bandpass – as a less powerful, special case of
such weighting – already showed to improve performance. With the
bandpass, blocked frequencies are assigned a weight of 0, whereas
passing frequencies are assigned a weight of 1.
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6.5.8.2 Obtaining Coherence Frequency Weights

With our setup we weight 51 coherence frequencies in the range [0, 1].
Assuming a coarse granularity of 0.1 (11 steps of size 0.1 in the range
[0, 1]) results in a grid search space size of 1151 – which is too large
for a simple parameter grid search. We instead utilize an evolution
strategy (ES) [29] to find a heuristic estimate of the optimal coher-
ence frequency weights. We use a (1 + λ)-ES with λ = 10 mutants,
randomly initialized starting weights, an initial maximum mutation
rate of 1 per generation and a maximum mutation rate reduction of
0.005 per generation. With each generation, all parameters are mu-
tated, and we run 919 generations in total (corresponds to a final
maximum-mutation of 0.01). To obtain reliable results we repeat the
ES 100 times (for both using time series magnitudes as well as initially
derotating time series) and use the best obtained weights. The heuris-
tic estimate of optimal coherence frequency weights shows that there
is a decline of weights with increasing frequency (Fig. 33) – however,
the decline is throughout unsteady.

Figure 33: Heuristic estimation of problem specific, optimal coherence fre-
quency weights.

It is important to understand that these estimated weights repre-
sent a highly problem-adapted optimum of weights (overfitted to
our problem) and therefore cannot be derived from discrimination
power metrics like AUC or directly reused for problems without re-
estimating the weights. Consequently, these weights just serve as a
prospect of possible performance gain using frequency weighting and
would have to be re-estimated if applied to other problems. Using the
heuristic estimate of optimal coherence frequency weights on top of
using time series magnitudes we are able to increase AUC to 0.9420

and decrease the EER to 0.1329. When instead applying it with ini-
tially derotating time series, using the distance to optimal coherence
thresholds and euclidean distance as coherence collapsing function
while replacing the coherence frequency bandpass filter, we are able
to increase the AUC to 0.9551 and decrease the EER to 0.1258. These
gains do not seem to outweigh the added complexity and risk of over-
fitting.
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6.5.9 Discussion of Performance Gain

Note that the order of combining constituent parts influences the as-
sociated difficulty of achieving a performance gain (Fig. 34, Tab. 8).
For constituent parts applied earlier more room remains to increase
performance.

Implement.

complexity

Individual Atop prev. parts

Constituent part AUC EER AUC EER

Time series magnitudes (baseline) low 0.8990 0.1777 — —

Derotated time series medium 0.9214 0.1562 — —

Coherence frequency bandpass low 0.9315 0.1418 0.9469 0.1293

Coherence vector collapsing fun. low 0.9023 0.1670 0.9464 0.1293

Dist. to opt. coherence thresh. medium 0.9056 0.1724 0.9495 0.1257

Coherence frequency weighting high 0.9420 0.1329 0.9551 0.1258

Table 8: Contribution of constituent parts of ShakeUnlock to overall perfor-
mance, applied individually and atop previous parts.

(a) Individual contribution (b) Combined contribution

Figure 34: ROC curves stating (a) the individual contribution of constituent
parts and (b) the combined contribution of constituent parts of
ShakeUnlock to overall performance.

The highest performance gain is achieved by including coherence
frequency weighting or its special case, the coherence frequency band-
pass. This emphasizes the importance of carefully selecting coher-
ence frequencies for human body motion analysis tasks. With fre-
quency weighting, implementation complexity is worth mentioning:
we use heuristically obtained estimates of optimal weights and these
weights have to be re-estimated when applied to different problems.
In contrast, the coherence frequency bandpass provides an easier to
implement alternative to frequency weighting. It achieves optimal
performance by including acceleration frequencies of up to about
20 Hz. This supports findings from previous research which suggest –
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against common assumptions – that human body movement includes
useful information up to or even beyond a frequency of 20 Hz.

The second highest performance gain is achieved using optimally
derotated 3D acceleration time series in consecutive analysis instead
of using acceleration time series magnitudes. Computing time series
magnitudes strips out rotation information contained in original 3D
time series. In contrast, with optimally derotated time series, parts of
rotation information remain (namely changes in rotation over time),
which is supported by improved performances. Consequently, derota-
tion of 3D acceleration time series should be considered before doing
consecutive analysis.

Including distance to optimal threshold and modified coherence
vector collapsing functions achieve minor performance gains. With
the first, the coherence threshold for separating classes is chosen op-
timally for each frequency. With the latter, euclidean distance turned
out to slightly outperform the frequently used averaging of coherence
on overall performance. When applied individually, both achieve a
small performance gain. When applied in combination with dero-
tated time series and a coherence frequency bandpass, their perfor-
mance gain is negligible, hence – depending on the problem – they
can be excluded from implementation in favor of frequency bandpass
and optimal derotation of time series.

6.6 implementation and user study

Based on findings from our evaluation we implemented ShakeUnlock
on Android for mobile phones and wrist watches5. In the implemen-
tation the link is established as soon one devices starts recording an
active segment and acceleration recordings are aggregated on the mo-
bile phone afterwards. In case one device did not detect an active
segment, unlocking is aborted and the user is notified. Further, the
user is notified about all successful or failed ShakeUnlock attempts
on both mobile phone and smart watch. This ensures the user is in-
formed in case case of the mobile phone being under control of an
attacker. Based on our finding, for active segment similarity analysis
we chose to include optimal derotation of 3D acceleration time series,
applying a coherence bandpass filter and collapsing the remaining
coherence vector to a single scalar value using euclidean distance.

Using our implementation we conduct a user study to quantify the
impact of attacks on ShakeUnlock as summarized in Sec. 6.2, and to
measure upper boundaries (which are expected to break unlock secu-
rity). The study featured a total of 15 pairs of participants pairwise
attacking each other 20 times per attack scenario (which results in a
total of 600 attacks per scenario). For cooperative attacks, participants

5 The ShakeUnlock implementation source is available via git clone from git@

bitbucket.org:usmile/shakedemo.git.

git@bitbucket.org:usmile/shakedemo.git
git@bitbucket.org:usmile/shakedemo.git
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were told to utilize any cooperative strategy or tool at hand except for
touching the other device or participant. This lead to participants us-
ing verbal communication, music, or even a metronome as help for
synchronization.

From study results, we found the FPR to be 0.20 for observatory
attacks, 0.35 for cooperative attacks, and 0.90 for handshaking attacks
(all with a threshold of 0.522, which corresponds to a TPR of 0.82 com-
puted from ShakeUnlock database data only6). On the one hand – in
contrast to [224] – in our setup, forging the second shaking pattern
seems feasible with a rate of about 0.2. We infer that this is caused by
the wrist as joint in between devices (instead of devices being pressed
against each other) – which causes sensed acceleration to be different
on devices when shaking them, consequently lowering the required
similarity of acceleration records for unlocks as well as attackers. On
the other hand, although this is a realistic attack, it is connected to
a certain effort, as attackers are required to a) acquire an identical
looking device and b) replace the user’s phone with the proxy de-
vice. From study results, we further consider both cooperative and
handshake attacks to break ShakeUnlock in terms of unlock security.
We argue that this is acceptable, as we also consider them unrealis-
tic/easily detectable in real life unlock situations.

6.7 summary

For token-based user-to-device authentication we propose ShakeUn-
lock to conjointly shake an unlocked, mobile token device and an-
other mobile device still locked to transfer the authentication state
from the token device to the other device and unlock it. A common
use case features a wrist watch as token device strapped to the wrist
and a mobile phone held in the same hand. Both are pre-paired and
can communicate over a secure channel. While devices are shaken,
we record 3D acceleration time series on both devices. These are
analyzed for similarity to decide if both devices have actually been
shaken conjointly. Therefore, shaking devices serves as secure trig-
ger mechanism to transfer the authentication state. ShakeUnlock has
the advantage of requiring only acceleration sensors, which are com-
monly integrated in mobile devices. Further, acceleration recording
can be done power efficiently using dedicated hardware – similar
to background step counting, which is already available in several
off-the-shelf mobile devices from various OEMs. The evaluation of
ShakeUnlock includes the influence of users using their dominant or
non-dominant hands and sitting or standing, as well as the contri-

6 The EER composed from one-vs-all comparisons using positive samples of the Shake-
Unlock database and negative samples only from the observably attack study is
slightly lower with 0.19; using cooperative attack data instead it is 0.23 and with
handshake attack data it is 0.45.
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bution of constituent parts to the system performance. We find that
using the dominant hand or standing leads to slightly improved accu-
racies over using the non-dominant hand or sitting – but overall this
seems to have little impact. In terms of contribution of constituent
parts of ShakeUnlock we find coherence frequency filtering and opti-
mal derotation of 3D acceleration time series to be most effective in
improving the distinguishability of legitimate unlocks and potential
attacks. We further implemented ShakeUnlock on off-the-shelf An-
droid devices. Using live data from our implementation, 15 pairs of
participants tried to attack each other and trigger unlocks in differ-
ent attack scenarios. Results indicate that observational attacks have
a success rate in the range of 0.2. This is higher than anticipated,
but seems acceptable, as for this, attackers at first need to a) replace
users’ devices in secret with mock devices and b) need to shake the
obtained device at the same time as users (with users being informed
about unlock attempts), creating significant barriers for a successful
attack.

We thereby conclude that ShakeUnlock is a mobile device unlock
approach complementary to existing unlocking approaches (e.g. PIN,
password, unlock pattern, or fingerprint). Similar to these it solves
not all but parts of the problem of unlocking mobile devices during
everyday usage. ShakeUnlock provides an additional option for per-
forming unobtrusive mobile authentication in certain situations that
users can choose to use. It thereby contributes to unobtrusive mobile
authentication by addressing different situations in which authenti-
cation might be required compared to existing approaches (e.g. un-
locking mobile devices one handedly without looking at the screen),
not imposing cognitive load on users, and a duration in the range 2 s
to perform the authentication state transfer. Future work on Shake-
Unlock could investigate long term acceptance with an extensive us-
ability study. Such a study needs to consider e.g. muscle memory
effects, its learning rate, and effect on usability over time. A short
study would likely only give limited insights and possibly be biased
towards negative feedback as it might not be able to account for learn-
ing a muscle memory or related effects. Hence, this study should be
performed longitudinally, spanning several weeks or months.
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E M P L O Y I N G V I B R AT I O N F O R D E V I C E - T O - U S E R
A U T H E N T I C AT I O N

In this chapter we highlight our vibration based device-to-user (D2U)
authentication approach which communicates an authentication se-
cret to users with a vibration code (Fig. 10, c). Parts of this chapter
have previously been published in [105].

Attackers who obtain control over a mobile device cannot access
data stored on it if the device is properly protected with a local
physical access protection mechanism, e.g. that requires successful au-
thentication before being unlocked. However, attackers can perform
hardware phishing attacks to trick user into unwittingly revealing
secret authentication information to an identically looking but mali-
cious phishing device (Sec. 3.6.1). This information can be relayed to
attackers who can possibly use it to perform authentication to the
original device, thereby to access data processed and stored on it.

Employing mobile D2U authentication would be one way to im-
pede hardware phishing attacks. Based on the little previous work in
this field (Sec. 3.6) we at first discuss different possibilities to estab-
lish mobile D2U authentication suitable for our scenario. In order to
provide a first countermeasure to hardware phishing attacks we then
present a mobile D2U authentication approach using vibration pat-
terns. Our approach communicates authentication information from
mobile devices to their users with vibrations. The vibration pattern
for a specific device is previously known to its users. When users
hold the mobile device in their hands and D2U authentication is per-
formed they should recognize the vibration pattern either as being
genuine (indicating a higher probability that the device is in fact the
genuine one) or as being different or missing (indicating that the de-
vice is probably a different one). Summarizing, the contributions of
our mobile D2U authentication approach are:

• We provide an overview of possible D2U authentication ap-
proaches and compare their advantages and drawbacks for mo-
bile devices, including estimated bandwidth and possible risks.

• We analyze vibration as one such D2U channel in detail, includ-
ing the design of a vibration code consisting of different vibra-
tion patterns and its evaluation with a user study on how well
those vibration patterns can be distinguished by mobile users.

Our approach to mobile D2U authentication thereby contributes to
unobtrusive mobile authentication by providing a first step towards
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See Hear Feel

Visual + - -

Sound - + -

Vibration - o +

Table 9: Possible D2U authentication approaches with strong (+), weak (o)
and few/no correlation (-) with human sensing capabilities.

closing the currently unaddressed aspect of D2U authentication on
modern mobile devices. In the future, D2U authentication employed
on mobile devices can impede hardware phishing attacks, thereby
provide a different aspect of protecting sensitive data on mobile de-
vices from unauthorized physical access of third parties.

7.1 possible ways of device-to-user authentication

Combining capabilities of current mobile devices and human sensing,
different D2U authentication approaches seem possible (Tab. 9). All
of them could be employed standalone or merged into a single hybrid
approach. Further, all of these could be used for the device revealing
authentication information to the user before, during, or after the user
authenticates to the device.

7.1.1 Visual

One obvious D2U authentication is to show authentication informa-
tion visually, e.g. on the mobile device display. Notification elements
could be used as well (e.g. the LED usually indicating the reception of
messages or calls). While displays feature higher channel bandwidth,
notification elements could show information even when the screen
is off (which does not seem to be an advantage in terms of security).
Similar to the concept of showing a secure authentication image to
the user [288, 289], this approach is prone to shoulder surfing.

7.1.2 Sound

Analogous to using visual information, authentication information
can be revealed via sound. For example, HAPADEP [319] uses a hu-
man recognizable MIDI codec transporting 240 bits of information in
3.4 s (∼70 b/s), which seems sufficient for D2U authentication tasks.
Similarly to visual approaches, sound is prone to attackers observing
authentication information without physical access to the device.
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7.1.3 Vibration

Information emitted by device vibrators can conceptually be observed
by a) feeling the vibration and b) hearing noise caused by vibrators –
given a quiet environment. In contrast to previous concepts, vibra-
tion cannot be visually observed by attackers, which is a valuable
advantage in terms of security. It further is unobtrusive as users do
not need to look at the screen or have to listen to sounds in a pos-
sibly noisy environment [4]. A drawback is attackers potentially be-
ing able to observe vibration pattern sounds in quiet environments.
While this could be exploited to obtain secret information, it is likely
still more complicated than e.g. overhearing authentication via dedi-
cated sound or observing secret information displayed on mobile de-
vice screens via shoulder surfing. We are currently not aware of any
research stating channel bandwidth of users distinguishing vibration
patterns. This is, together with its favorable security properties, why
we conduct a user study on evaluating how well preliminary vibra-
tion patterns can be recognized by users.

7.1.4 Interlock Authentication

For all mentioned possible D2U authentication channels, there exist
multiple variants of how to integrate D2U authentication with U2D
authentication. The first is to have the device authenticate to the user
before the user authenticates to the device. On the one hand, this en-
sures users that it is the correct device they are revealing their authen-
tication secret to. On the other hand, in case attackers get physical
access to the device (without being aware of the user authentication
secret, so they cannot unlock the device), they would be able to ob-
serve the D2U authentication secret – and could later mock it too,
using a phishing hardware device. If instead the user authenticates
to the device first, and afterwards the device to the user, hardware
phishing attacks are possible, as the device only authenticates after
the user authentication secret has been fully revealed.

A more promising variant would be using the interleaving “inter-
lock” information exchange [178, 287] to integrate user-to-device and
D2U authentication. Interleaving authentication information is well
known and in active use in a variety of areas (e.g. to prevent different
types of attacks on network communication and key exchange proto-
cols [228]). Interleaving could start with the device revealing the first
authentication part to the user, right before the user starts authenti-
cation to the device (e.g. when the screen is turned on). Successive
parts would be revealed only if the user enters correct authentication
information. Here, the difficulty could again lie with the human fac-
tor: users experience a potentially increased authentication effort and
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are required to stop entering further authentication information to
the device, if the device does not reveal itself as their trusted device.

Summarizing, using vibrations seems better suited for D2U authen-
tication than using visual information or sound. Though there exist
several studies of M2M communication using mobile device vibra-
tion as communication channel, which state the channel bandwidth
in the range of tens b/s [375] to hundreds b/s [4, 134, 294], we are
not aware of any vibration channel bandwidth analysis that involves
humans and devices (e.g. how much information a human can pos-
sibly extract from machine vibration patterns). Therefore, vibration
could prove suitable for D2U communication – thereby also for D2U
authentication, which we investigate in the next section.

7.2 threat model

Without employing D2U authentication, attackers could use hard-
ware phishing attacks to obtain authentication information from users
who unwittingly authenticate to a phishing device (Sec. 3.6.1). Attack-
ers can then use the obtained information to gain access to data stored
on a user’s device. Hardware phishing attacks are fostered by two
factors: a) no countermeasures to hardware phishing attacks being
employed with most modern mobile devices and b) hardware phish-
ing attacks not requiring special knowledge, in contrast to the pre-
viously discussed threats of reconstructing biometrics from obtained
biometric templates or forging shaking patterns from obtained shak-
ing acceleration. For this reason hardware phishing attacks could be
performed by a broader range of attackers. While hardware phish-
ing attacks bring initial purchasing cost for obtaining an identically
looking phishing device, attackers do not “spend” this cost but only
exchange devices, which can be considered cost-neutral in the long
view. Consequently, the effort of performing a hardware phishing at-
tack is limited to observing which device and locking mechanism is
used, obtaining and configuring a phishing device to look identically
and to forward any entered information to attackers, and swapping
the phishing device with real device while it is unattended.

When employing vibration based D2U authentication users observe
an authentication secret their device communicates to them using vi-
brations. In case of attackers performing hardware phishing attacks
without taking D2U authentication into account, users would notice
that the device is not communicating any authentication secret. Users
can therefore stop using the device (this includes aborting a poten-
tially ongoing user-to-device authentication) and investigate the issue.
In case attackers are aware that vibration based D2U authentication
is employed but have no knowledge of the exact vibration pattern
used they could choose to use a random vibration pattern with the
phishing hardware. Users should thereby recognize that the vibra-
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tion pattern they observe is different and abort device usage as in
the previous case. The requirement that arises from this threat is that
vibration patterns within a predefined vibration code for D2U authen-
tication should be well distinguishable by users. In case attackers gain
knowledge of the vibration pattern the device uses to authenticate to
their users, they can employ the same pattern to perform hardware
phishing attacks without alarming users during the attack. For this
reason, like device-to-user authentication secrets, D2U authentication
secrets should not become known to attackers.

Visual or sound based D2U authentication could easily be eaves-
dropped by attackers, e.g. by using shoulder surfing or being close
to users and listening while they perform authentication. In contrast,
obtaining vibration patterns is more complicated for attackers. If the
device communicates the authentication secret before user-to-device
authentication is performed, attackers could grab the device while its
unattended to observe the vibration pattern. If the device performs
D2U authentication after user-to-device authentication is performed
attackers cannot observe the vibration pattern this way. However, ob-
taining it might not be necessary at all, as attackers could perform
hardware phishing attacks without employing vibration based D2U
authentication, because users do not expect any vibrations until user-
to-device authentication has been performed. In contrast, if an inter-
lock based authentication is utilized, attackers would need to obtain
the D2U authentication secret and need legitimate users to perform
user-to-device authentication for the D2U authentication secret to be
revealed. As physically touching the device to observe its vibrations
at the same time users are authenticating is unlikely to stay unde-
tected, attackers are limited to eavesdropping the sound that mobile
devices make while vibrating1. This improves the threat model in
two ways. First, the time window for obtaining D2U authentication
secrets is limited to when legitimate users authenticate. Second, while
eavesdropping vibration patterns seems possible in quiet environ-
ments, it is presumably connected to an increased effort or impos-
sible altogether in noisy environments. This might require attackers
to use additional tools (e.g. microphones, amplifiers, and/or analysis
of recorded audio signals). We argue that those additional steps in-
crease the effort for attackers, thereby raise the bar for successfully
performing hardware phishing attacks and improve the correspond-
ing threat model.

1 As with our previously discussed threat models we declare attackers using malware
to eavesdrop and extract D2U authentication vibration patterns from mobile devices
out of scope.
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7.3 device-to-user authentication using vibration pat-
terns

In this section we design a vibration code consisting of different vibra-
tion patterns that mobile devices can use to communicate authentica-
tion secrets to their users. In order to estimate how well users would
be able to correctly recognize such a code we further perform an ac-
cording evaluation. In this evaluation, we measure how well users
are able to correctly recognize a familiar vibration pattern and how
well they are able to distinguish different vibration patterns – that
possibly feel similar – from each other.

7.3.1 Preliminary Vibration Code

The main limitation of vibration for user friendly D2U authentication
is duration: if authentication takes noticeably longer when incorpo-
rating device authentication, the vibration feedback will possibly not
be employed by users. As mobile U2D authentication usually takes
in the range of 1.5–3.5 s (depending on the employed unlocking ap-
proach) [150, 377], we restrict ourselves to a window of this size. For
example, using a 4 digit PIN for user authentication with an esti-
mated duration of 2 s would result in revealing the next digit to the
device about every 0.5 s. This 0.5 s window could be used to reveal
a part of the D2U authentication information via vibration. Based on
these limitations and a preceding, preliminary study on which vibra-
tion types and timings are easy to be distinguished correctly, a pro-
totypical vibration test code was derived. Consequently, with more
in-depth insights to human vibration pattern recognition capabilities
this code (and its bandwidth) could likely be improved.

Our preliminary vibration code consists of different vibration pat-
terns. Each vibration pattern contains 1–2 groups of vibrations, with
each group consisting of up to 3 single vibrations (Fig. 35). The sec-
ond group is allowed to be empty (containing no vibrations), while
the first group must contain at least one vibration. This results in our
test code being able to transport one of a total of 3 · 4 = 12 different
patterns per transmission. Vibration and pauses between vibrations
of the same group are of 60 ms duration. Pauses between vibrations
of different groups are of 200 ms duration. This setup results in an
average pattern duration of 465 ms, which would be within the hy-
pothetic 0.5 s time frame for feedback with a 4 digit PIN entered in
2 s – and which results in a bandwidth of ∼7.7 b/s. Subsequently, we
depict patterns as the amount of vibrations contained in each group,
e.g. “3 2” for the first group containing 3, the second 2 vibrations, or
“2” the first group containing two vibrations and the second being
empty.
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Figure 35: Example vibration pattern “3 2” from our preliminary vibration
code, with 0 and 1 indication no vibration and vibration, respec-
tively.

7.3.2 Vibration Pattern Recognition Study Setup

The preliminary vibration code has been implemented in an Android
application2 for the successive user study. The application features
two modes: in trial mode, users can trigger all different vibrations as
they wish and learn how they feel. In test mode, users are assigned
a randomly chosen vibration pattern and have to decide for further,
also randomly chosen vibration patterns, if this was their assigned
pattern.

12 people participated in the study and were allowed to try out
the application in trial mode as long as they wished. Each partici-
pant did at least 12 vibration pattern recognition sets in test mode,
where for each test set they were assigned a random pattern and had
to decide for 16 further random patterns (which they could trigger
only once), if it was their assigned pattern. The probability of the test
pattern being the assigned pattern was set to 5

16
. This setup resulted

in 898 and 1614 recognitions of assigned and non-assigned patterns,
respectively3.

7.3.3 Vibration Pattern Recognition Results

Vibration pattern recognition rates over all users (Fig. 36a) indicate
that our vibration patterns can successfully be distinguished. There
seems to be no trend of shorter or longer patterns being recognized
correctly with higher probability. Instead, recognition correctness in-
volving vibration patterns “2”, “1 1” and “2 2” seems to be lower,
compared to recognition not involving these patterns.

The confusion of recognition correctness for all possible combina-
tions of assigned and presented patterns (Fig. 36b) and the distribu-
tion of true positive and true negative recognition rates for all vibra-
tion patterns (Fig. 36c and 36d) indicate that if users are presented
their assigned patterns they can likely recognized it correctly, with a

2 The application code is open source and publicly available at https://github.com/
mobilesec/device-to-user-authentication-vibration-bandwidth.

3 Detailed study results are publicly available at https://www.usmile.at/downloads/.

https://github.com/mobilesec/device-to-user-authentication-vibration-bandwidth
https://github.com/mobilesec/device-to-user-authentication-vibration-bandwidth
https://www.usmile.at/downloads/
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median correctness of 97.5%. This further indicates that non-similar
patterns are even likelier correctly recognized as being different, e.g.
with patterns such as “1” and “3 3”, which have been distinguished
without a single error. But this also indicates that there is a tendency
of users to incorrectly recognize non-assigned patterns as their as-
signed ones, if patterns are similar. For example, pattern “2” and “2

1” have frequently been mis-recognized as “1 1” (error rates of 27%
and 9%), pattern “1 3” as “1 2” (15%), pattern “2 3” as “1 3” (14%), or
pattern “3 2” as “3 3” (20%). The resulting median recognition rate
over all assigned and non-assigned patterns is 97.5%.

Despite these errors our preliminary vibration code has an average
bandwidth of ∼7.7 b/s and our results show a median successful vi-
bration pattern distinguishing rate of 97.5%. From this we infer that
vibration patterns could serve as valuable D2U authentication chan-
nel.

After finishing the study about 50% of participants stated that they
believed they used hearing vibration patterns in combination with
feeling them to decide if it was their assigned pattern. This indicates
that hearing and feeling are used together for recognizing vibration
patterns. Consequently, future research should investigate human vi-
bration pattern recognition capabilities from only feeling patterns
(e.g. with suppressing vibration sounds for participants or having
them listening to music) as well as from only hearing patterns. Al-
though the latter represents the scenario of attackers possibly being
able to overhear secret vibration authentication information we argue
that this is likely still more complicated than e.g. overhearing ded-
icated sound or observing secret information displayed on mobile
devices via shoulder surfing.

7.4 summary

Our approach towards vibration based D2U authentication shows
promising results, with vibration patterns – that act as authentication
secrets in our scenario – being recognized correctly with a median
accuracy of 97.5%. Further, results confirm intuition that patterns ob-
served as being more similar to each other also seem harder to be
distinguished correctly. Our findings thereby indicate that vibration
in the future could be utilized as unobtrusive and potentially hard-to-
eavesdrop D2U authentication feedback channel.

Within the context of our overall goal D2U authentication thereby
addresses users being able to unobtrusively recognize their devices
not only by their appearance but also by an authentication secret de-
vices communicate back to them. This impedes attackers perform-
ing hardware phishing attacks, thereby also contributes to prevent-
ing unauthorized physical access of third parties to data processed
and stored on modern mobile devices. D2U authentication could



7.4 summary 131

(a) Overall recognition correctness per code from all participants.

(b) Recognition correctness over assigned and pre-
sented code from all participants.

(c) True positive recognition rate per code from all participants.

(d) True negative recognition rate per code from all participants.

Figure 36: Participants’ recognition rates of vibration patterns as (a) over-
all recognition correctness per codes involved, (b) distribution
of recognition correctness over assigned and presented codes, (c)
distribution of true positive recognition rates per code, and (d)
distribution of true negative recognition rates per code.
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thereby be performed in parallel to users authenticating to devices
themselves – which would be less obtrusive in terms of required time
dedicated to D2U authentication. In combination with an anticipated,
possibly arising muscle-memory-like effect this would lead to users
intuitively recognizing their device by the familiar vibration pattern –
without explicitly concentrating on it. Vibrations differing from the
known pattern would lead to users becoming suspicious and either
aborting their own ongoing authentication to the device or at least
being able to initiate countermeasures if they already performed au-
thentication to limit possible damage. The combination of unobtru-
siveness and difficulty for attackers to eavesdrop on the secret – in
comparison to visual or audio based secrets – thereby incorporates to
our overall goal of providing additional unobtrusive security in form
of authentication for everyday usage with mobile devices.

Future research on vibration based D2U authentication could inves-
tigate eavesdropping resistance. Within our evaluation participants
stated they used hearing too to decide if a vibration patter was their
assigned pattern. Consequently, future research should investigate,
amongst others, human vibration pattern recognition capabilities by
only hearing or feeling them – with the latter representing a possi-
ble attack scenario of attackers in quiet environments observing vi-
bration authentication information by hearing it. This would aid the
design of robust and distinguishable vibration patterns as well as se-
cure exchange of information between users and devices based on
vibration in general. While we evaluated how well vibration patterns
can be distinguished, we leave the evaluation of muscle-memory like
effects for future work. Future work investigating if and how such
muscle-memory-like effects arise with intuitively distinguishing vi-
bration patterns and correctly recognizing a specific pattern would
need to be performed longitudinal, e.g. with daily usage over weeks
or months. Further, future research could investigate other possibil-
ities than using visual, audio, or vibration communication of infor-
mation from devices to users. The required core aspects such com-
munication for the purpose of authentication are twofold: a) being
unobtrusive to users by e.g. being easy to remember, distinguish, and
preferably possible to be done in parallel to users’ activities on the
mobile device, and b) being difficult for attackers to observe to pro-
tect the authentication secret.
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R E C A P O F O U R A P P R O A C H F R O M A N
AT TA C K E R ’ S P E R S P E C T I V E

In this chapter we review our approach from an attackers perspective.
We recap the situation without using our approach, including threats
and possible attack scenarios and discuss the general potential for op-
timization in order to impede those attacks and to improve the threat
model. We then discuss which threats are addressed and in which
ways possible attacks are impeded. We also discuss which threats re-
main or have arisen anew with our approach – which consequently
remain for further investigation in future work.

8.1 an attacker’s perspective on mobile authentication

without our approach

8.1.1 Mobile Device Authentication Without our Approach

When users authenticate and interact with their mobile devices with-
out using our approach, from a top-level view of the attacker’s per-
spective there exist several possibilities to e.g. obtain physical access
to mobile devices, the authentication secret/token, or users’ biomet-
rics (Fig. 37).

Knowledge based authentication on mobile devices bears cognitive
load on users that increases with the length and complexity of the
authentication secrets as well as the amount of devices to protect.
The input of secrets for authentication on mobile devices can be cum-
bersome and time consuming due to small user interfaces and little
haptic feedback and further requires user attention (e.g. having to
look at the screen). These drawbacks are known to cause users to
choose weak secrets or even not use knowledge based authentication
at all. From a threat model perspective this leads to certain mobile
devices being unsecured or protected with weak secrets – which aids
attackers in physically accessing unsecured mobile devices or guess-
ing weak secrets using brute force approaches. Further, the input of
knowledge based secrets can be observed by attackers using shoulder
surfing or smudge attacks and used with replay attacks to access mo-
bile devices. Biometrics based authentication does not bear cognitive
load on users, therefore can be considered to be less obtrusive. How-
ever, biometrics cannot easily be exchanged in case of their disclosure
to third parties. From a threat model perspective, when biometrics
are used on mobile devices for unobtrusive authentication, they con-
sequently might themselves become a high value target for attackers.

133
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Mobile devices

Legitimate actions

Threats

Access unsecured devices,
guess weak knowledge based secrets,
unlock device while being close to token

Storage
and matching
of biometrics

Obtain biometric templates

Authentication,
interaction

Shoulder surfing attacks,
obtain authentication tokens,

hardware phishing attacks

Obtain
biometric data

Figure 37: Overview of an attacker’s perspective on authentication with mo-
bile devices without using our approach.

Attack vectors thereby include obtaining biometric data both from
mobile devices and from other sources (e.g. attackers recording bio-
metric data themselves).

With token-based authentication users have to remember to bring
the token for authentication. Different authentication systems might
require users to carry different tokens. Token-based authentication
can also take additional time to locate and present the token to the
mobile device. Further, acquisition of tokens is usually connected to
additional costs. From a threat model perspective too obtrusive or
too costly token-based authentication approaches might again cause
users to not use them, leading to unsecured devices. Further, tokens
could be accessed or stolen by attackers, potentially together with the
corresponding mobile device. In addition, if tokens unlock mobile
devices based on proximity, attackers might access a mobile device
e.g. behind the back of its owner without being noticed, or unlock it
and leave the scene.

In contrast to user-to-device authentication, device-to-user authen-
tication is virtually not used with mobile devices. From a threat model
perspective this facilitates hardware phishing attacks in which attack-
ers replace the mobile device with a phishing device. When the un-
suspecting user authenticates the authentication information can be
relayed to the attackers who can thereby obtain access to the user’s
device which they previously got under their control.
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8.1.2 Room for Improvement with Mobile Authentication

The discussed threats emphasize existing issues with current mobile
device authentication and illustrate that there is room for improve-
ments regarding certain aspects of mobile authentication. Progress in
the corresponding areas would lead to a reduction of attack vectors
and improvement of the threat model. From an attackers point of
view improvements that would impede the mentioned threats can be
summarized as follows:

diverse options for authentication : the more options for au-
thentication are available the higher the chance that a certain op-
tion is unobtrusive in the user’s current situation. This would
facilitate higher adoption rates of mobile authentication. Ad-
vantages in both the combination of different authentication ap-
proaches and the diversity of authentication approaches them-
selves could thereby lead to a reduced threat model.

protection of biometrics : when biometrics are used with mo-
bile authentication their templates need to be protected accord-
ingly. Generic approaches to protecting biometrics could thereby
facilitate the protection of different biometrics. As some modern
mobile devices are already shipped with SCs these can be used
for the purpose of storing and matching biometrics.

device-to-user authentication : first steps towards device-to-
user authentication with mobile devices would facilitate the pro-
tection of mobile users from hardware phishing attacks. Similar
to user-to-device authentication these approaches need to aim
for being unobtrusive.

8.2 how our approach impedes attacks

Our approach fills some of the previously discussed gaps that remain
for improving mobile authentication. It impedes some of the corre-
sponding threats and attacks in different ways, thereby contributes
to improving the overall threat model of unauthorized physical third
party access to mobile devices. We now shortly review how our ap-
proach impedes the corresponding threats.

threat : access unsecured devices We provide alternative
authentication options to mobile authentication like ShakeUnlock and
our generic biometric MOC authentication. Those can be used with-
out limitations alongside existing authentication approaches. The more
such alternative options for mobile authentication are available the
more likely one option suits the user’s current situation, leading to
overall reduced obtrusiveness. For example, with ShakeUnlock users
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are able to perform authentication single-handedly without being
required to look at the device screen. With an authentication time
around 2 s, not bearing any additional cognitive load (users do not
need to carry a separate token device as the token is their wrist watch)
we argue that ShakeUnlock is a feasible option for authentication on
mobile devices and in certain situations less obtrusive than other op-
tions. The same applies to our approach to generic biometrics MOC
authentication. It does not bear additional cognitive load on users,
it protects used biometrics using MOC techniques, and operations
involving SCs take around 1-2 s. As our approach is applicable to dif-
ferent biometrics its authentication can suit different situations (such
as gait authentication while walking or voice authentication while
being on the phone). Our approach thereby contributes to making au-
thentication unobtrusive in different situations, thereby reducing the
threat of mobile devices being unsecured.

threat : guess weak knowledge based secrets , shoulder

surfing attacks ShakeUnlock and our generic biometric MOC
authentication approach are resistant to both users choosing weak
secrets and shoulder surfing. This is because both are not utilizing
knowledge based authentication at all. Therefore, this threat can be
seen as non-existent/addressed with our approach. Still, we want to
point out that our approaches are non-perfect in terms of error rates.
In situations where our approach is unsuitable, knowledge based au-
thentication could be used as backup strategy. Thereby, one benefit of
our approach could be seen as reducing the number of times users are
required to use more obtrusive and potentially less secure knowledge
based authentication.

threat : obtain token, unlock device while being close

to token With our generic biometric MOC authentication, no to-
kens are involved. With ShakeUnlock, obtaining the token device is ar-
guably more difficult than with classic authentication tokens. Firstly,
we do not use a dedicated token device that users might easily forget
or lose (which would be explicitly used for authentication, therefore
not fulfilling any other purpose). In case of the token device being
a wrist watch, it is strapped to the user’s wrist. As many people
are used to carrying wrist watches, they would implicitly also carry
the token device without any additional effort. Further, for obtaining
the token, attackers would have to remove the token device from the
wrist of the user without the user noticing. Secondly, in contrast to
other tokens, our token device features a locking mechanism itself
and could easily lock itself when detached from the wrist. To do so
it could use e.g. a switch in the latch that locks the device if the latch
is opened or embedded sensors that monitor the user’s liveness and
lock the device when it is removed from the wrist, as no liveness sig-
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nal can be detected in this case. Therefore, obtaining an unlocked to-
ken device is difficult for attackers. Further, ShakeUnlock does rely on
proximity of token and mobile device to perform the unlock but uses
related acceleration on both devices. Consequently, attackers cannot
unlock a mobile device they brought under their control just because
of being near to the token device (e.g. behind the user’ back), thereby
impeding the corresponding threat.

threat : obtain biometric templates Our generic MOC au-
thentication approach is a step towards protecting arbitrary biomet-
rics on SCs using MOC techniques. For attackers, MOC authentica-
tion raises the effort required to obtain the involved biometric tem-
plates. Attackers are thereby required to run malware on mobile de-
vices instead of being able to read templates from the device stor-
age1. Further, as templates stored on the SC with MOC intentionally
never leave it, the timing of attacks is limited to when the legitimate
user enrolls or authenticates. Our approach thereby is a first step to-
wards protecting arbitrary biometrics using MOC techniques. By be-
ing generically applicable to different biometrics and not requiring
retraining the model to enroll individual users, it can thereby facili-
tate the transition of further biometrics to MOC approaches, thereby
impeding the threat of attackers obtaining users’ biometrics.

threat : hardware phishing attacks Our approach towards
device-to-user authentication ensures users that they are interacting
with the correct device and enables them to recognize when interact-
ing with a hardware phishing device instead. Hence our approach im-
pedes hardware phishing attacks being carried out successfully. Our
approach should thereby be seen only as a first step towards mobile
device-to-user authentication – with the possibility of future research
further investigating this topic.

8.3 remaining and newly arisen threats

While our approach does address threats in authentication with mo-
bile devices it does not cover all potential threats. Some threats have
been left out or have been shortened on purpose, others have newly
arisen (Fig. 38).

Within the scope of our approach we did not consider strong at-
tackers in detail that are able to e.g. run malware on mobile devices.
Such malware could be able to e.g. monitor or manipulate the de-
vice memory, sensor values, or the device storage. Malware thereby
needs to be considered as a different class of problem: with the men-
tioned abilities it would be able to undermine the confidentiality and

1 Attacks on SCs are outside the scope of our work.
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Figure 38: Overview of threats that remain with applying our approach.

integrity of all information on mobile devices that is not stored or
processed within special hardware and completely without influence
from the malware. We therefore have declared malware to be out of
scope for our approach. We address the problem of mobile authenti-
cation under the assumption that there is no malware on devices able
to eavesdrop or manipulate information processed internally. There-
fore, even when using our approach, a mobile device with malware
needs to be considered compromised, therefore incapable of provid-
ing means for secure authentication. Countermeasures to malware on
mobile devices are an important part of mobile device security that is
left to related and future research – however, with our approach, this
threat remains. Further, the considered attackers do not use strongly
personalized information about their targets to derive information
that can be used to circumvent our approaches to mobile authentica-
tion. Recent research [239] has suggested and demonstrated an eval-
uation of biometrics using strong attackers. As such evaluations are
strongly dependent on i.e. the used biometrics we leave these aspects
for future work. In addition, attackers could use other means than
mobile devices to obtain e.g. biometric data about users (for example,
attackers recording biometric data themselves). As our approach fo-
cuses on mobile devices, such threats are outside the scope and not
addressed by our work.

Our approach does not provide perfect user-to-device authentica-
tion security results. However, our goal was to provide first steps
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towards new and additional authentication options that enable un-
obtrusive authentication while raising the bar for physical access to
mobile devices or disclosure of biometrics for attackers. Therefore,
there remains room for improvement of authentication accuracies, i.e.
using different hardware and more sensors. While perfect authenti-
cation security has not been the goal of our work, coincidental au-
thentication errors are a threat that has newly arisen with our work.
In terms of device-to-user authentication, another newly arisen threat
is the potential for attackers eavesdropping vibration patterns. While
eavesdropping vibration is arguably more difficult than eavesdrop-
ping authentication information using acoustic or visual signal there
is a possibility of attackers e.g. recording and analyzing vibration
noise to obtain the device-to-user authentication secret. Investigation
of the feasibility of performing such attacks as well as possible coun-
termeasures is left for future work.

Threats that remain with using our approach include too high au-
thentication effort when using a multitude of mobile devices and au-
thentication being impossible to devices with different or no user in-
terfaces. With the first, when users are using a large amount of mobile
devices even little effort for authentication might become too much.
Users might therefore choose to not protect these devices. While our
approach aims to be unobtrusive, one cannot be sure that the required
authentication effort (e.g. using biometrics or shaking devices) is suf-
ficiently small when used with the multitude of mobile devices of
mobile users in the near and far future. Hence, while we provided
means to reduce the amount of unprotected devices some devices
might still remain unprotected due to authentication being too ob-
trusive. In addition, not all types of mobile devices can be protected
using our approach. While most devices are equipped with cameras,
acceleration sensor, and vibrators (which is sufficient to use all as-
pects of our approach), devices without these sensors lack the means
of employing our approach. Therefore, while the threat of attackers
accessing unprotected devices has been reduced, certain devices will
remain unprotected, hence parts of this threat remain.

To summarize, our approach is able to address the majority of
the previously discussed threats or to provide an improvement to
them (Fig. 37), thereby impeding potential attacks and changing an at-
tacker’s perspective on mobile authentication. However, other threats
remain or have newly arisen with (Fig. 38). We argue that the improve-
ments outweight the newly arisen threats, hence that our approach
overall improves the threat model of mobile authentication. We fur-
ther emphasize that our approach and its constituent parts needs to
be seen as first step towards the corresponding directions of provid-
ing unobtrusive ways of protecting mobile devices from unauthorized
physical access of third parties.
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C O N C L U S I O N A N D O U T L O O K

9.1 summary

The main objective of this thesis was to investigate additional, alterna-
tive, and unobtrusive approaches to authentication with users in the
mobile environment in order to protect mobile devices from unau-
thorized physical access of third parties. The context of this objective,
the corresponding research questions, as well as the contributions
made by this dissertation within this context have been summarized
in Cha. 1. Modern mobile environments with their comprehensive
access to diverse data and the applicability of authentication to such
environments have been highlighted in Cha. 2. This includes the dif-
ferent types of data mobile devices have access to, the possible impact
of this data being disclosed to unauthorized third parties, as well as
the applicability of authentication to protect data on mobile devices
from unauthorized physical access. Classic authentication like PINs
or passwords thereby bring significant drawbacks if applied with
mobile devices. Approaches to perform authentication unobtrusively
with mobile devices have been discussed in Cha. 3. These comprise
diverse knowledge, biometrics, and token-based approaches with re-
spect to the mobile environment and unobtrusiveness, but also ap-
proaches incorporating multiple authentication modalities, as well as
approaches to let devices authenticate to users. Thereby, while cer-
tain previous work has tried to achieve unobtrusiveness with mobile
authentication, we conclude that there is still a need for additional
approaches that provide for broader possibilities and applicability in
diverse situations. This includes both mobile user-to-device authenti-
cation as well as device-to-user authentication, whereupon the latter
has received little attention in literature.

We presented our approach to unobtrusive bilateral mobile authen-
tication with biometrics and mobile device motion in Cha. 4. Our ap-
proach consists of three interconnected parts, namely mobile, generic,
and biometric MOC authentication, the transition of authentication
states between mobile devices using conjoint shaking, and device-to-
user authentication using vibration patterns. With our generic, mobile
biometric MOC authentication (Cha. 5) we investigated the simplifi-
cation of biometric features and offline computed machine learning
models for biometric authentication to make their usage on SCs feasi-
ble. We obtain one authentication model per biometrics that performs
matching of biometric samples on SCs and does not require retrain-
ing for enrolling users. By simplifying features and models we further
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achieve low storage requirements for both models and biometric tem-
plates. With ShakeUnlock (Cha. 6) we investigated the transition of
authentication states between mobile devices by conjointly shaking
them. ShakeUnlock thereby represents a token-based mobile device
authentication approach that uses one mobile device to which authen-
tication has already been performed as token and another mobile de-
vices as the target to perform authentication to. Shaking both devices
conjointly serves as the trigger mechanism for a transition of the au-
thentication state from one device to another. As shaking is difficult
to forge for attackers who only have one device under their control,
this further ensures that the transition can only be triggered in case
both devices are actually held in the same hand. With our device-to-
user authentication (Cha. 7) we investigated using vibration patterns
of mobile devices to communicate authentication information from
devices to users. We encode a preshared authentication secret with
device vibrations and communicate it to users holding the mobile
device in their hand. While this is a first step towards the area of
mobile device-to-user authentication, this area still remains open for
further and novel approaches due to having received little attention
in literature in the past altogether.

9.2 contributions

This work contributes to unobtrusive mobile authentication with an
approach consisting of three interconnected parts. The main contribu-
tion can thereby be summarized as follows:

• The generic protection of biometrics used to perform unobtrusive au-

thentication on mobile devices using SCs: the novel contribution of
our approach comprises of a) combining offline machine learn-
ing with simplification of features and models to achieve their
employability on computationally restricted SCs with MOC tech-
nologies, b) the computed model not requiring retraining for
enrolling new users, and c) the approach being generic, that is
it being applicable to different biometrics alike.

• The novel transfer of authentication states between mobile devices in

order to perform authentication/unlock them: our approach uses
conjoint shaking of mobile devices in a novel context, namely
the transfer of the authentication state from one already un-
locked device to another still locked one in order to unlock it.
Thereby, this represents a novel mobile and token-based authen-
tication approach that does not impose cognitive load on users
and is designed to be applicable in situations where other au-
thentication approaches are more cumbersome to use.

• Mobile devices authenticating to their users with vibration codes: our
novel approach uses short vibration patterns to communicate
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an authentication secret to users, e.g. in parallel to them per-
forming user-to-device authentication. Our approach thereby is
to be seen as a first step towards mobile device-to-user authen-
tication which has received little attention is past literature.

From the results of the evaluations conducted and the correspond-
ing findings we are able to answer the research questions stated at
the beginning of this dissertation (Sec. 1.1):

How can authentication that is employed to protect data on mobile devices

from unauthorized physical access of third parties suit the large variety of

situations in which authentication might be required?

The previous approaches towards unobtrusive mobile authentication
(Cha. 3) point out a) that there are diverse authentication approaches
that could be employed with mobile devices and b) that those are
often only unobtrusively applicable in certain situations while be-
ing obtrusive in others. Further investigating additional, diverse, and
alternative ways to mobile authentication, such as with our work
(Cha. 4) will likely result in additional approaches becoming avail-
able – which can be applied unobtrusively in other situations. The
combination of such diverse approaches, e.g. using authentication
frameworks like CORMORANT, results in more options and choices
being available for mobile authentication. This can result in users be-
ing able to choose the best suited authentication in different situations
or authentication being performed implicitly and transparently alto-
gether, and thereby result in mobile device authentication becoming
less obtrusive.

How could authentication with multiple mobile devices be used as advan-

tage rather than a drawback?

One way to incorporate multiple devices in unobtrusive mobile au-
thentication is to utilize devices to which authentication has already
been performed or which are already unlocked as tokens to perform
authentication to further devices. In comparison to requiring users
to authenticate to each device individually this would result in less
often performing classic authentication, thereby can reduce the over-
all obtrusiveness. Using one device as token its authentication state
(e.g. “unlocked”) could be transferred to other devices to perform
authentication and/or unlock them, as illustrated in our approach
with ShakeUnlock (Cha. 6). As with all token-based authentication
approaches, an important aspect of such authentication state transfers
is to determine when it is secure to be performed. This is necessary
to prevent attackers from easily unlocking any mobile devices they
got under their control (without being in control of a corresponding
token device). Our approach addresses this by requiring both devices
to be held in the same hand to trigger an authentication state transfer.

How to protect biometrics used for authentication on mobile devices from

disclosure? How to apply such protection to multiple biometrics in order to
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aid secure usage of different biometrics on mobile devices in the future?

One way to protect different types of biometrics used for authentica-
tion on mobile devices from disclosure is with employing SCs that
increasingly become available to current mobile devices. The algo-
rithms employed on SCs should be generically applicable to differ-
ent biometrics and need to be computable on SCs. Our approach
to generic biometric MOC authentication would be one such exam-
ple (Cha. 5). By simplifying features and authentication models, their
usage on SCs becomes possible, both in terms of available memory
and storage as well as in sufficiently short computation time. Further,
for authentication with modern mobile devices, offline computing
one authentication model per biometrics has two significant advan-
tages. Firstly, the model is universally applicable to different partic-
ipants. It does neither require (re)training to enroll new users nor
shipping training data on mobile devices as a prerequisite to perform
(re)training, thereby requiring less time and occupying less space on
mobile devices. Secondly, as the approach is generic, different models
can be computed for different biometrics using the same techniques.
Consequently, such generic approaches could aid the transition of fur-
ther biometrics used with authentication on mobile devices to using
MOC techniques.

How can mobile users be protected from hardware phishing attacks, that

is them being deceived into unwittingly revealing sensitive information to

identically looking but malicious phishing devices?

To protect mobile users from hardware phishing attacks mobile device-
to-user authentication can be employed (Sec. 3.6). Thereby, devices
authenticate to their users. While different ways of communicating
authentication information from devices to users are possible, those
are differently difficult to eavesdrop for attackers. This is why we do
not employ e.g. a visual or audio but vibration code for this purpose
in our approach (Cha. 7). While device-to-user authentication allows
for further investigating diverse approaches, those should – similarly
to user-to-device authentication – be designed with their obtrusive-
ness in mind. This includes the cognitive load imposed on users as
well as the additional time required to perform authentication. For
example, one way of reducing the additional time required for per-
forming device-to-user authentication is to perform it in parallel to
users authenticating to their devices.

9.3 critical evaluation and outlook for future work

While our work has made substantial contributions to unobtrusive
mobile authentication it on purpose shortens or leaves out certain
aspects which are consequently open for further investigation in the
future.
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For protecting biometrics used for authentication on mobile devices
one aspect left for future work is the protection of information out-
side secure hardware. While MOC approaches prevent attackers from
gaining access to templates stored on the SC or to templates while
they are matched they do not secure the whole processing chain. At-
tackers could obtain access to biometric information while it is out-
side secure hardware. This applies to both the usage of secure hard-
ware such as SCs and to algorithmic approaches such as biometric
template protection. For example, attackers could obtain biometric
information by gaining access to sensors or to any preprocessing that
is done outside SCs or without biometric template protection. To pre-
vent disclosure on this way additional measures need to be taken.
Such could include combining SCs with a trusted execution envi-
ronment (TEE) that secures the processing chain from the sensor to
the SC or biometric template protection. This could also be achieved
by integrating the complete processing chain (from sensing biomet-
ric information to yielding an authentication decision) into secure
hardware, e.g. into a system-on-card (SOC) approach. Alternatively,
biometric template protection algorithms could as well be combined
with TEEs to protect biometrics information from sensors to yielding
an authentication decision. Besides designing suitable and generic
MOC approaches, future challenges with protecting biometric infor-
mation include the design of preprocessing and feature derivation
approaches that can be included in TEEs and/or SOC approaches.
Theoretically, preprocessing could also be included in biometric tem-
plate protection algorithms – but in order to secure disclosure of bio-
metric information directly from sensors non-algorithmic approaches
are necessarily required.

Another aspect left open for future work is the meaningful com-
bination of diverse authentication modalities. This essentially is the
core functionality of authentication framework like CORMORANT
which is in the focus of a separate PhD thesis and for which work
is currently ongoing. While this present thesis provides for different
means of mobile authentication, the combination of their results and
the derivation of overall authentication information is left for such
future work. Challenges future work will need to address include
determining useful levels of confidence (that a legitimate user is oper-
ating/trying to authenticate to a mobile device) required to perform
certain tasks or access certain data on mobile devices. They further
include deriving the risk that mobile devices could be operated by po-
tential attackers, e.g. from the device context, and determining when
it is necessary or when there is a good point in time to trigger mobile
users for explicit authentication.

Investigating other ways of device-to-user authentication is another
aspect left open for future work. While user-to-device authentication
has thoroughly been investigated in the past decades, device-to-user
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authentication has received little attention in literature. This is why
this area stays open for novel ideas and approaches, such as with
using vibrations to communicate authentication information from de-
vices to users. One detail of using such vibrations that has been left
open for future work is the investigation of vibration eavesdropping.
While it is arguably more difficult to eavesdrop vibration than vi-
sual or audio information communicated from devices to users no
quantification of the corresponding effort or success rate has been
conducted in our work. As participants in our evaluation assumed
that they also used hearing to recognize their vibration authentica-
tion pattern conducting experiments to quantify this effect would be
interesting. Future work could investigate how big the contribution
of hearing is when recognizing vibration using a combination of feel-
ing and hearing and how well both work when used individually. It
could further investigate how easy it would be for attackers to eaves-
drop information communicated by different mobile devices using
vibrations when only being able to hear it from certain distance and
including e.g. different types and amounts of background noise.

A more general aspect that has partially been left for future work
is the inclusion of strong and powerful attackers. While the resistance
of our approach has been shown for types of attackers typically used
in literature, resistance against strong and powerful attackers can be
considerably more difficult. For zero or minimal effort attacks attack-
ers are not required to have comprehensive knowledge about their
targets. While this lowers the effort required to perform such attacks,
it can also be connected to decreasing chances of attacks being suc-
cessful. In contrast, attackers having comprehensive knowledge about
their targets might enable different forms of attacks altogether. One
recent and illustrative example of using strong attackers in evalua-
tions of biometric authentication approaches would include the work
of Muaaz and Mayrhofer [239] which use trained actors to copy hu-
man gait as good as possible. While they find that in their evaluation
both weak and strong attackers are unable to break their approach
this might not be the case for other approaches. The main challenge
of evaluating diverse authentication approaches with strong attack-
ers is modeling such attackers in the first place, as the possibilities
and ways to perform attacks rise drastically with the power and re-
sources attackers have access to. Investigating how to model strong
attackers for diverse authentication approaches and evaluating those
approaches using strong attackers thereby is an important point left
open for future work.

To summarize: in the short term, future work on unobtrusive mo-
bile authentication could further investigate additional and alterna-
tive authentication approaches. While each individual approach might
only be unobtrusively applicable in certain situations, the combina-
tion of such approaches could provide for increasingly unobtrusive
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authentication on mobile devices in the future. Especially implicit,
continuous, and in certain situations completely transparent authen-
tication could contribute to this. In the medium term, future work on
unobtrusive mobile authentication could investigate different ways
to incorporate the increasing amount of mobile devices users own
or have access to, similarly to e.g. ShakeUnlock or the cross-device
aspect [147, 148] of CORMORANT, which is still under active devel-
opment. In the long term, future work on unobtrusive mobile authen-
tication will consequently have to deal with the multitude of devices
that might become part of our daily lives, e.g. with currently heavily
researched areas such as the Internet-of-Things (IoT) or the area of
automotive computing. Another important long-term aspect of mo-
bile authentication will be the protection of users’ digital identities.
Interactions in a fully digital environment will lead to the digital rep-
resentation of users becoming of significant importance in the future.
Protecting access to this identity – which will necessarily be avail-
able in a mobile manner – will be another important aspect of mobile
authentication in the future.
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