
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, MONTH YEAR 1

ShakeUnlock: Securely Transfer Authentication
States Between Mobile Devices

Rainhard Dieter Findling, Muhammad Muaaz, Daniel Hintze, René Mayrhofer

Abstract—As users start carrying multiple mobile devices, we propose a novel, token based mobile device unlocking approach. Mobile

devices are conjointly shaken to transfer the authentication state from an unlocked token device to another device to unlock it. A

common use case features a wrist watch as token device, which remains unlocked as long as it is strapped to the user’s wrist, and

a locked mobile phone, which is unlocked if both devices are shaken conjointly. Shaking can be done single-handedly, requires little

user attention (users don’t have to look at the device for unlocking it) and does not cause additional cognitive load on users. In case

attackers gain control over the locked phone, forging shaking is difficult, which impedes malicious unlocks. We evaluate our approach

using acceleration records from our 29 people sized ShakeUnlock database and discuss influence of its constituent parts on the system

performance. We further present a performance study using an Android implementation and live data, which shows the true negative

rate of observational attacks to be in the range of 0.8 – if an attacker manages to gain control over the locked device and shake it in

parallel to the device owner shaking the token device.

Index Terms—Mobile environments, Security and Privacy Protection, Authentication, Time series analysis,

✦

1 INTRODUCTION

Many people already carry multiple mobile devices such
as mobile phones, tablets, and smart watches. Other
wearable computing gadgets (e.g. activity or fitness
trackers) are on the rise as well. Most of these devices
have access to, process and/or store sensitive infor-
mation [2]. Well-known examples include, but are not
limited to, communications (email, SMS, instant messag-
ing), context information (location), access to non-public
networks (WiFi, VPN), access to payment or identity
management applications, photos, documents, and even
health related information (e.g. heart rate). In addition,
with the “Bring your own device” trend, employees start
to store and process company data on private devices
(cf. [3], [4]). To prevent attackers from gaining access
to data stored on these devices, locking and unlocking
mechanisms have been developed. Those lock devices
while not being used (e.g. after a short idle timeout)
and users have to unlock them before usage. While
authentication conceptually is divided into knowledge-,
biometrics-, and token based-authentication [5], [6], so
far approaches for mobile devices mostly utilize either
knowledge- or biometrics-based authentication.
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The most widely used mobile knowledge-based un-
locking mechanisms are PIN, password and graphical
pattern [7]. All of them increase the cognitive load on
the user [8], [9] and require a certain time to enter the
secret knowledge – which might be cumbersome due to
small user interfaces on mobile devices [10]. In addition,
mobile devices are unlocked more frequently than, e.g.,
desktop computers, but used for shorter periods of time
(cf. [11], [12], [13], [14]), which deteriorates the unlock-
to-usage-time ratio. Therefore the impact of increased
cognitive load and effort required to perform the unlock
is higher on mobile devices than on desktop computers.
Furthermore, knowledge based unlocking approaches
are vulnerable to shoulder surfing attacks (attackers
watching the authentication process, thereby observing
the unlocking secret, cf. [15], [16]) and smudge attacks
(attackers screening the display after the user authen-
ticated using a graphic pattern to observe the residual
smudge that might remain on the display, thereby ob-
serving the unlocking secret, cf. [17], [18], [19]).

Biometrics-based approaches most commonly used on
mobile devices include fingerprint (e.g. Apple TouchID),
face, or voice (cf. [5], [20]). While those are easy to
use and do not increase the cognitive load, the draw-
back lies with securing biometrics of users. Unlike with
knowledge- or token-based authentication, biometric
features cannot be changed – which increases the impact
of leakage or theft of biometrics. In addition, hardware
used to capture and process biometrics on mobile de-
vices is often proprietary, which makes identifying and
analyzing potential security issues difficult.

In contrast to knowledge-based authentication and
biometrics, token-based unlocking mechanisms are
rarely used on mobile devices. Most approaches pro-
posed so far are based on proximity of token and device
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to perform the unlock. Examples include transmitting
a secret from token to device via bluetooth, NFC, or
IEEE 802.11 (WiFi) [21], [22], [23], using the device
magnetometer to determine proximity to the token, or
mobile speakers and microphones to transmit/receive a
secret [24].

Proximity based approaches have the drawback of
attackers possibly being able to unlock the mobile device
they got under their control if they are close to the user.
For example, with WiFi- or Bluetooth-based approaches
it might be sufficient to be in the same room with
the legitimate user to successfully unlock the device.
As attackers are likely to be close to the user when
obtaining control over the mobile device, an immediate
unlock would be possible before leaving the scene. When
using token-based authentication, the token needs to be
brought by users everywhere they potentially want to
use their mobile device. Depending on where the token
is kept, it could be possible to obtain control over both
token and device at once and then use the token to
unlock the device. If the token itself is locked to prevent
illegitimate usage in case of theft, the whole problem
is transfered from the mobile device to the token – as
unlocking the token itself again could be done using
knowledge-, biometrics- or token-based authentication.

To address these issues we propose a novel token-
based mobile device unlocking approach: transferring
the authentication state between two devices by briefly
shaking them conjointly. The key idea is that personal
mobile devices can remain unlocked for different periods
of time, one could act as a token, allowing to transfer
authentication state between devices. For example, a
mobile phone should lock itself as soon as it is put aside
while a smart watch could remain unlocked as long as
it is strapped to the wrist and automatically lock itself
when detached. The smart watch could e.g. be unlocked
once in the morning when attached to the wrist and
automatically lock itself when detached, utilizing e.g.
heart-rate measurements like with the Apple Watch1 or
a simple connection in the strap that is triggered by
opening it. Using this setup, the authentication state
from the unlocked watch can be transferred to the locked
phone to unlock it – hence the unlocked device can
serve as token for unlocking other devices. Shaking
both devices simultaneously with the same hand serves
as a fast, easy and secure trigger for authentication
state transfer. The authentication state transfer is only
triggered after an analysis of sensor time series recorded
on both devices concludes that a) both devices have been
shaken simultaneously and b) both devices have been
shaken by the same person. For simplicity, from now on
we will refer to the device from which the authentication
state is transferred as token device where applicable.

Unlocking mobile devices by shaking them conjointly
has noteworthy advantages over other unlocking ap-

1. Apple Watch heart rate measurements: https://support.apple.
com/en-us/HT204666

proaches. Required user attention is assumed to be lower
compared to current unlocking approaches, as users
only need one hand and are not required to look at
the devices to unlock them. In terms of speed, studies
show that unlocking duration ranges from 1.5 s (PIN)
to 3 s (unlock pattern) [14], [25]. We assume that these
1–3 s are considered an acceptable unlocking delay in
terms of usability vs. security. To be comparable to
other unlocking mechanisms, we aim for 2 s of shaking
to transfer authentication states between devices while
requiring less user explicit attention.

Shaking devices can be utilized on a broad range
of mobile devices nowadays as accelerometers are a
common feature of mobile phones, tablets and smart
watches as well as activity trackers and other wearable
computing gadgets. Previous research on pairing mobile
devices by shaking them conjointly has stated shaking to
be secure, as acceleration records are difficult to forge by
shaking devices bare handed [26], making it a suitable
choice for security critical applications2. We base our
approach on these findings but focus on a different
use case: transferring authentication states from a token
device to another device to unlock it. Consequently, the
scenario presented here implies different approaches to-
wards security and usability with analyzing acceleration
sensed on both devices. This article focuses on the tech-
nical aspect and security implications of ShakeUnlock –
and leaves a thorough evaluation of usability and accep-
tance for future work, as such a study would need to
consider longitudinal effects of muscle memory/muscle
learning (users being able to perform movements with-
out explicitly thinking about them, like 10-finger-typing
on a keyboard). Summarizing, our contributions are:

• In contrast to previous research on shaking mo-
bile devices conjointly to establish a secure channel
between them, we focus on shaking as a secure
trigger mechanism to transfer authentication states
from a token device to another device over a pre-
established secure channel.

• Our approach processes data from mobile devices
situated 10-15 cm apart from each other (mobile
phone held in the hand, smart watch strapped to the
wrist) with the wrist as a non-static joint in between,
which implies differences in sensed acceleration on
both devices.

• Using this setup we record the ShakeUnlock
database containing 3D acceleration and 3D gyro-
scope time series recordings of mobile devices being
shaken conjointly. We use this data to parameterize
and evaluate our approach.

• We give detailed insight into our approach to pair-
wise shaking time series similarity data analysis.
We state in which way and how much constituent
parts contribute to the overall system performance.

2. Hypothetical attacks could involve e.g. high speed cameras and
an apparatus to precisely recreate visually observed shaking behaviors
but are beyond the scope of this work.
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We believe that future approaches can benefit from
these detailed insights and findings.

• We implement our approach on Android and
present a performance study which evaluates three
different attack scenarios.

At first we give an overview of related work on shak-
ing devices (Sec. 2) and outline the threat model for our
approach (Sec. 3). We then present our approach (Sec. 4),
state details about analysis concepts and evaluate their
influence on system performance (Sec. 5). Finally, we
present our implementation and an evaluation of dif-
ferent attack scenarios using live data (Sec. 6).

2 RELATED WORK

2.1 Shaking Mobile Devices Conjointly

Analyzing movement and acceleration records for de-
termining if mobile devices were shaken together by the
same body movement has been subject of a significant
body of research over the last 10 years. Research ranges
from analysis of simple movements with accelerometer
recordings (cf. [27], [28]) to deriving secret keys from
acceleration data (cf. [26], [29], [30], [31], [32]).

With “Smart-Its Friends”, Holmquist et al. [33] have
been amongst the first to associate devices by shak-
ing them together. Their devices sense acceleration and
broadcast it, so that other devices may decide on pairing
with them. Their approach purely focuses on pairing
without taking security aspects like Man-in-the-middle
(MITM) or replay attacks into account. In “Are You with
Me?”, Lester et al. [34] have built upon this work but use
frequency domain based magnitude squared coherence
instead of time domain based analysis to pair devices.
Their approach has further been extended by Mayrhofer
and Gellersen in “Shake Well Before Use” [26] which
additionally covers security aspects of pairing devices
by shaking them conjointly.

“Shake Them Up” by Catelluccia and Mutaf [35] uti-
lizes a related idea, although it does not involve sensing
acceleration. They monitor WiFi received signal strength
indication (RSSI) which is likely to change when devices
are moved/rotated. As devices are moved together they
experience similar changes in RSSI over time on the
basis of which devices decide if they have been moved
together. This approach is designed with MITM protec-
tion in mind. However, it depends on wireless signals
and wireless signal strength sensing capabilities to be
available on both devices.

The special aspect of shaking devices conjointly which
are apart from each other and have a non-static joint
(e.g. the wrist) in between was addressed by Fujinami
and Pirttikangas [36] for associating objects with users.
Amongst other things they consider toothbrushing with
sensors attached to the users hands and toothbrushes.
Similarly, Bao and Intille [37] have investigated activity
recognition including tooth brushing from 2D acceler-
ation sensors and time domain features. We deal with
the same complicating issues for robust acceleration time

series comparison due to having a non-static joint be-
tween devices, which will cause devices to sense slightly
different acceleration during shaking. Additionally, we
have to consider security implications of attackers trying
to forge acceleration patterns to get access to obtained
devices.

In terms of data analysis, shared movement and
shaking has been analyzed in both time and frequency
domain. For in depth comparison we refer to [38], [39]
as well as related research from the field of activity
recognition (cf. [40], [41], [42]). Although analysis in
time domain seems to be capable of yielding higher
entropy [29], analysis in frequency domain seems more
resistant to synchronization issues [34]. In our approach,
devices independently record acceleration and decide if
they are currently shaken. Devices will sense slightly
different acceleration due to the non-static joint in be-
tween them, hence detect active shaking at slightly dif-
ferent points in time. As we cannot assume exact syn-
chronization between devices we use frequency based
analysis. So far the most successful analysis approach
is using frequency-domain based magnitude squared
coherence [43], which has been used in various previous
studies (cf. [26], [34], [44], [45], [46], [47]) and which is
utilized in our approach as well.

2.2 Implications of Shaking on Security

In 2011, Studer et al. [48] proved the well known and by
now discontinued mobile phone application “Bump”3

to be insecure. With “Bump” and similar approaches
such as simultaneously pressing a button on both de-
vices (cf. [28], [49], [50]) correct timing is the only
critical aspect to establish a channel between devices.
As timing cannot be assumed secret, attackers can easily
perform MITM attacks by forging required information
and communicating them with correct timing. Instead
of using timing constraints we utilize shaking to trigger
the transfer of authentication state from the token device
to other devices. Consequently, resistance against forged
shaking patterns is required to prevent attackers from
triggering an authentication state transfer without being
in control of both devices at the same time.

Most previous research on shaking mobile devices
conjointly in the scope of security aim to establish a
secure channel between devices [26], [29], [30], [51],
[52] (also known as bootstrapping or human verifiable
authentication problem [53]). In contrast to these ap-
proaches we study shaking as trigger mechanism to
transfer an authentication states from the token device
to other devices over an pre-established secure channel.

3 THREAT MODEL

We want to emphasize that a) a user in control of the
unlocked token device and the locked phone is inten-
tionally able to trigger the authentication state transfer to

3. See http://bu.mp
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unlock the phone, as no biometric authentication is per-
formed. b) the authentication state transfer is triggered
if – and only if – the token device is unlocked and the
phone is locked when both devices are shaken conjointly,
which renders being in control of the locked token device
and phone insufficient for attacks. Consequently, access
protection for the token device is required. As discussed
before, when assuming that users attach their locked
token device to their wrist once a day, then unlock it (e.g.
in the morning), the token device can stay unlocked until
users lock it manually or it is detached from the wrist.
Compared to access to an unlocked phone or regular
authentication token not featuring a locking mechanism,
we argue that this brings an increased level of access
protection to the unlocked token device:

• It is more difficult for the token device to be lost or
stolen, as it is attached to the users wrist.

• For attackers it is more difficult to obtain/access to
the unlocked token device, as it automatically locks
itself when detached from the wrist and accessing
it in an unlocked state therefore would require
accessing it before detaching it from users wrist,
which is unlikely to go unnoticed.

For our scenario we therefore assume the token device
to be secure and restrict addressed attack scenarios to
the locked phone being under control of an attacker.
We further assume that the token device is unlocked,
as otherwise no authentication state transfer can be
triggered.

3.1 Attack Scenarios

For all attack scenarios, the locked mobile phone is
considered to be under physical control of an attacker
trying to unlock it unnoticed by legitimate users who
controls the token device. To trigger an authentication
state transfer from the unlocked token device to the
phone, simultaneous shaking of both devices is required.
This implies the legitimate user also has to shake the
token device, which is why an attacker must synchro-
nize any attack attempts with the user’s shaking of the
token device. We address four such attack scenarios with
different attacker capabilities:

Minimal effort attacks assume that users have been
tricked into accepting a proxy device as their own and
subsequently trie to unlock it by shaking it conjointly
with the token device. Attackers simultaneously shake
the target device they control but without trying to
mimic the shaking pattern of users. Note that we use
the term “minimal effort” because attackers does not
take additional effort such as imitating users’ shaking
behavior. Sophisticated preparation, e.g. obtaining con-
trol over the device beforehand and tricking users into
taking a different device for their own, is still required
for this kind of attack. Being resistant against minimal
effort attacks means being resistant against two people
separately shaking both devices at the same time to
trigger an authentication state transfer.

Observatory attacks use the same setup as minimal
effort attacks, but attackers are observing the legitimate
users and attempt to synchronously mimic the users’
shaking patter to unlock the device, without the legit-
imate users noticing.

Cooperative attacks allow any cooperation between user
and attacker except touching each other or the other’s
device in order to achieve high similarity in shaking
patterns. This attack is supposed to break the approach
and serve as measure of upper boundary to the security
achieved, as in terms of authentication it is both unreal-
istic and harder than both previous attacks.

Handshake attacks assume attackers strap the mobile
phone to their wrist using a bandage (see figure 1).
Then users and attackers shake hands hard to achieve
synchronized acceleration records on both devices. This
requires the hand to which wrist the token is attached to
be used for the handshake. As with cooperative attacks,
handshake attacks are supposed to break the approach.
In a real life scenario, attackers shaking users’ hands as
hard as required to trigger recording of continuous 2 s
shaking would be unrealistic, as it is far from natural
and would make users suspicious.

(a) (b)

Fig. 1. Possible handshake attack setup with a) the

mobile phone being strapped to the attacker’s wrist and

b) attacker shaking the user’s hand hard.

3.2 Attack Evaluation

From security perspective, evaluating these attacks sce-
narios could be done with a one-to-one matching of data
aggregated from devices both shaken and not shaken
conjointly. These can be used to state a) success rates
of legitimately triggering authentication state transfer
(true positive rates) and b) attack success rates (false
positive rates). From a system parametrization perspec-
tive, a larger number of samples is required to obtain
suitable distinguishing capabilities. We therefore use m-
to-n matching of uncorrelated shaking samples in our
data set to simulate minimal effort attacks which we use
in turn to parameterize our approach (see section 5). To
evaluate the remaining three attack scenarios we use an
implementation of the proposed concept on off-the-shelf
Android devices with one-to-one matching of live data
(see section 6).
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Fig. 2. Data processing chain used in the ShakeUnlock

approach.

4 OUR APPROACH

Our approach is split into two major steps: separately
sampling acceleration on both devices and deciding
upon triggering an authentication transfer between de-
vices on one device (Fig. 2). The first step consists of
monitoring acceleration, deciding if the device is shaken,
and extracting an active shaking acceleration segment
(active segment) independently on both devices. If active
segments have been detected, both are aggregated on
one device. In the second step the similarity of active
segments is determined to decide if devices have been
shaken conjointly and thus an authentication state trans-
fer should be triggered. Note that in contrast to related
approaches, no data is stored on the devices – not even
in the form of cryptographic keys or hashes.

4.1 Active Segment Detection

In our approach devices continuously and separately
monitor acceleration, which can be done without exces-
sive draining of battery power by utilizing hardware
dedicated to acceleration recording. Such hardware is
already becoming available in off-the-shelf mobile de-
vices, such as for background step counting in the Apple
iPhone5, iPhone6 and Apple Watch, Samsung Galaxy
S5 or Sony Xperia Z1(c)-Z3(c) devices. As shaking is
detected, the power efficient hardware can e.g. power on
the main CPU which then performs the computationally
more expensive networking and time series comparisons
tasks.

Our approach looks out for the start of an active
segment by monitoring the variance of the acceleration
magnitude of the 3D acceleration sensor in a sliding
window as described in [26]. If the variance of accelera-
tion within this window rises above a certain threshold,
this marks the start of an active segment from which
acceleration on 3 axes is recorded for a short duration,
capturing the shaking of the device. For our evaluation
and implementation we use an acceleration monitoring
sliding window of 2 s, an acceleration variance threshold
of 6·10−4 m

s2
and record active segments of 2 s length after

shaking is detected. If users prematurely stop shaking

(i.e. active segment < 2 s), no authentication state trans-
fer will be triggered.

After active segments have been detected and
recorded separately on both devices, we aggregate them
on one device. Data aggregation could be done on each
of the devices, as both are assumed secure and connected
via a secured channel. However, when transferring the
authentication state from the watch (token) to the phone,
data aggregation on the phone has the following advan-
tages: a) Usually, mobile phones have higher compu-
tational power than smart watches, hence the decision
on performing the authentication state transfer will be
obtained faster. b) If we conclude to perform the au-
thentication state transfer from watch to phone based
on recorded active segments, no further data transfer
between devices is required, as the decision is done on
the phone already.

4.2 Authentication Transfer Decision

After active segments have been recorded on both de-
vices individually and aggregated on one device, we
analyze those active segments to determine if devices
have actually been shaken conjointly. If so, we per-
form an authentication state transfer between devices
to unlock the device still locked. Before performing the
actual similarity analysis, we preprocess the two active
segments. We compensate for gravity recorded within
the active segments by subtracting the mean acceleration
per axis throughout the active segment.

Our similarity analysis takes a pair of active segments
as input and yields a scalar metric value as output. If this
metric value is above a reference threshold, we conclude
that active segments represent devices shaken conjointly,
therefore trigger the authentication state transfer and
unlock the locked device. If the metric value is below
the predefined threshold, we conclude that active seg-
ments represent devices not shaken conjointly, therefore
refuse the authentication state transfer and do not unlock
the device. Our similarity analysis consists of different
constituent parts, which we present and discuss in the
next section.

5 ACTIVE SEGMENT SIMILARITY ANALYSIS

Previously Mayrhofer and Gellersen [26] showed that
it is feasible to detect if devices – which are pressed
against each other – have been shaken conjointly using
magnitude squared coherence on acceleration time series
magnitudes. In previous research [1] we applied this
method with adapted parameters and preprocessing to
acceleration time series magnitudes of devices some-
what apart and with non-static joint in between during
shaking. The presented extended approach additionally
incorporates derotation of 3D time series before perform-
ing the similarity analysis, bandpass filtering, a different
collapsing function, and optimal weighting of individual
frequencies. In this section we discuss and evaluate
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each constituent part and its influence on overall perfor-
mance. Obtained performance comparisons are stated in
section 5.9.

5.1 Parametrization and Evaluation Data

We parametrize and evaluate our approach using data
from our publicly available ShakeUnlock database4 [1]
on the basis of devices shaken conjointly and simulated
minimal effort attacks. Other attack scenarios are not
based on this data and are separately covered in sec-
tion 6. The ShakeUnlock database contains acceleration
and gyroscope recordings of 29 participants shaking a
wrist watch (strapped to their wrist) and mobile phone
(held in the same hand). For each participant, 20 samples
of shaking both devices for 10 s have been recorded –
which results in 580 pairs of shaking samples and a total
of 1 160 recordings in the database. In previous research
we have evaluated the influence of shaking duration
on unlocking performance [1]. Our findings support the
intuition that increasing the shaking duration improves
accuracy when assessing whether devices have been
shaking conjointly, but obviously impair usability as the
effort increases. We found a shaking duration of 2 s
to constitute a reasonable trade-off between usability
and security. Consequently, for this work we restrict
ourselves to a shaking duration of 2 s, therefore extract
one active segment of 2 s duration per time series record-
ing. Active segments shorter than 2 s are excluded from
further analysis, as this simulates users not shaking their
devices long enough.

We use all 580 time series pairs of devices shaken
conjointly as legitimate tries to trigger authentication
state transfer between devices. Therefore, our positive
class P is of size 580. To simulate minimal effort attacks
we use all 580 · 579 = 335 820 combinations of time
series obtained from not shaking devices conjointly as
our negative class N . Note that we exclude pairs of same
type of devices (two mobile phones as well as two smart
watches) as these scenarios are not realistic in real life5.

5.2 Performance Measures

As the sizes of our P and N class differ notably, some
performance measures like accuracy are not signifi-
cant [54]. We therefore rely on a number of well known
and more significant metrics in our evaluation. The
true match rate (TMR) represents the ratio of correctly
identified cases of users trying to trigger an authentica-
tion state transfer with devices being shaken conjointly
(P class samples). Likewise, the true non match rate
(TNMR) represents the ratio of correctly identified cases
of minimal effort attacks, with devices not being shaken
conjointly (N class samples). We obtain the TMR and

4. The ShakeUnlock database is available online at http://usmile.
at/downloads.

5. This is different to our previous research [1] in which we included
same device types being shaken conjointly. We consequently obtain
slightly different performance rates with this evaluation.
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Fig. 3. Active segment similarity analysis in ShakeUnlock.

TNMR for all possible metric thresholds, from which
we construct the receiver operating characteristics (ROC)
and the area under the ROC curve (AUC). Both ROC and
AUC capture the overall performance instead of stating
the performance at a specific metric threshold. The equal
error rate (EER) states the error for TMR = TNMR, repre-
senting the intersection between the ROC curve and the
diagonal from TMR = TNMR = 1 to TMR = TNMR = 0.

5.3 Magnitude Squared Coherence with Accelera-
tion Time Series Magnitudes

With magnitude squared coherence [43] the time series x

and y are divided into n overlapping slices (Fig. 3). Each
slice is multiplied with a weighting window (such as a
Hann or Hamming window). We use slices of 7

8
overlap

and 1 s duration (with 100 Hz sampling rate this corre-
sponds to slice and window lengths of 100 samples), and
a Hann weighting window as proposed in [26]. Next,
all slices are transformed into the frequency domain by
applying a standard fast Fourier transformation (FFT)
with 1 s window size. For each pair of corresponding
slices from x and y, the coherence vector Cxy,n(f) is
calculated from the power spectral densities Sxx,n and
Syy,n and the cross spectral density Sxy,n (Eq. 1). Then,
all n coherence vectors Cxy,n(f) are averaged to the
single coherence vector Cxy(f) (Eq. 2).

Cxy,n(f) =
|Sxy,n|2

Sxx,n · Syy,n

(1)

Cxy(f) =
1

n
·
∑

n

Cxy,n(f) (2)

Finally, a scalar metric value Cxy is obtained from Cxy(f)
using a collapsing function (Eq. 3).

Cxy = Col(Cxy(f)) (3)

This metric value Cxy is interpreted as confidence that
devices have actually been shaken conjointly while
recording x and y. Hence, if Cxy ≥ T , with T being
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a predefined metric threshold, we transfer the authen-
tication state and unlock the device. If Cxy < T we
refuse to transfer the authentication state, leaving the
device locked. We apply the method as summarized
above on the time series magnitudes of the two active
segments x and y. Using the magnitude acceleration time
series is done frequently to compensate for unknown
spatial alignment of accelerometers. Thereby, time series
magnitudes are calculated from the L2-norm of the
active segment 3D acceleration time series. As collapsing
function Col we average the coherence vector Cxy(f) up
to a cutoff frequency of 40 Hz (Eq. 4).

Cxy =
1

41
·

40Hz
∑

f=0Hz

Cxy(f) (4)

Using only magnitude squared coherence with accelera-
tion time series magnitudes, we obtain an AUC of 0.8990
and an EER of 0.1777.

5.4 Optimal Timeseries Derotation

Relying only on magnitudes for comparing acceleration
time series between different devices implies losing some
potentially important information in the form of rota-
tional components during the movement. Most previous
research has focused on magnitudes because in general
orientation of devices potentially moved together and of
the accelerometers within those devices is unknown.

Comparing movement in three dimensions instead
of only the aggregated magnitude therefore requires:
a) the assumption that the devices retain their relative
orientation with regards to each other during the shared
movement, and b) rotating one of the coordinate sys-
tems into the reference frame of the other. We refer to
this process as derotation and it can be considered an
optimization problem to find the rotation matrix that
minimized the distances between two 3D vectors. Recent
results show that a quaternion based approach can be
used to solve this optimization problem analytically
and that it improves the EER with various distance
metrics on the same data set used before [55]. We apply
this approach to derotation as one step for improving
classification accuracy.

Fig. 4 states the coherence density over frequency for
the P and N class for applying coherence on magnitudes
as well as on all axes of previously derotated time
series. Brighter areas represent lower coherence, darker
areas represent higher coherence. Coherence is observ-
ably more dense for the P class when derotating time
series before computing coherence instead of computing
the series magnitudes (Fig. 4a and 4b). In contrast, the
density for the N class is only marginally influenced by
derotating time series before computing coherence by
being slightly higher on average (Fig. 4c and 4d). This
is to be expected, as correlated time series initially are
rotated arbitrarily but intentionally contain similarity –
which causes derotated time series to show noticeably

higher similarity. In contrast, initially not correlated time
series only have little coincidental similarity. Optimally
rotating them therefore only causes an insignificant raise
in similarity. This data suggests that for frequencies
showing condensed coherence values, derotation of time
series will improve class separation performance – which
is supported by evaluation results stated below as well.

In contrast to comparing time series magnitudes we
instead compute coherence for each pair of axes (which
have been aligned through derotation). Therefore, co-
herence computation yields three separate coherence
vectors, one per (aligned) pair of axes. Each coherence
vector represents the frequency range 0-50 Hz for 100 Hz
sampling in data recording. Hence, all successive oper-
ations (e.g. filtering frequencies by applying a 0-20Hz
bandpass) have to be applied to these three coherence
vectors individually. We apply the previously used 40 Hz
cutoff to the coherence vectors, then average them to
obtain a final, scalar coherence value. By adding initial
time series derotation to our evaluation setup, we obtain
an AUC of 0.9214 and an EER of 0.1562.

5.5 Coherence Frequency Bandpass

Overall, research on human body motion states quite
different motion frequencies to usefully represent motion
information. For example, in Biomechanics and Motor
Control of Human Movement, Winter [56] states human
body motion is in general represented by a frequency
range of about 0-10 Hz. In contrast, e.g. Bouten et al. [57]
find frequencies up to 20 Hz being useful to represent
human movement during everyday activities. They fur-
ther state that body movement of e.g. limbs is usually
faster, compared to movement of torso and hip, whereas
shaking mobile devices with the hand corresponds to the
mentioned faster movements.

In their research on shaking devices conjointly,
Lester et al. [34] pick up the frequency range of 0-10 Hz
stated by Winter [56]. They average coherence in the
range of 0-10 Hz to come up with a scalar similarity
value. In contrast, Mayrhofer and Gellersen [26] average
coherence in the range of 0-40 Hz to determine if devices
were shaken conjointly without stating details on how
this cutoff frequency was determined. It can be assumed
that results from using a coherence range of 0-40 Hz
were superior to results from using a range of only 0-
10 Hz for their approach, for which the wider frequency
range was used. To determine the optimal coherence
frequency range we explicitly study the influence of
different bandpass filters to classification performance.

As shown in the coherence distribution over frequency
(Fig. 4), coherence is unequally distributed over fre-
quency in the ShakeUnlock database. Overall, coherence
is less dense as well as less diverse across P and N class
for higher frequencies, compared to lower frequencies,
although the lowest frequencies in the range of 0-2 Hz
are less dense and less diverse across classes as well.

In order to utilize the best performing coherence fre-
quency range in our approach, we apply a bandpass to
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(a) P , no derotation (b) P , derotation (c) N , no derotation (d) N , derotation

Fig. 4. Coherence densities per frequnecy of P and N class without and with time series derotation.

(a) On magnitude data (b) On derotated data

Fig. 5. Coherence bandpass performance (AUC per

bandpass filter setting) when applied without (a) and with

derotation of time series (b). Note that left and right bright-

ness scaling is differently to increase distinguishability.

coherence frequencies before successively computing a
scalar similarity value from the coherence vector. For
real world applications and from an implementation
point of view, using a bandpass has several advantages
over more complex approaches of restricting the fre-
quency range. Using a bandpass is intuitive and easy
to understand. Further, it is fast and easy to implement
and of small complexity. In our bandpass evaluation,
fL represents the lower frequency threshold, hence the
lowest coherence frequency included during successive
processing. Likewise, fH represents the upper frequency
threshold. The frequency bandpass performance (Fig. 5)
states AUC over pairs of fL and fH , with darker areas
representing higher AUC values, therefore better perfor-
mance.

Note that with our setup, performance decreases no-
tably when increasing fL, while changes of fH seem to

have significantly less influence on performance. On the
one hand, this indicates that the most important portion
of information is contained in lower frequencies, and
that higher frequency information is less reliable – which
is in support of findings from previous research. If these
lower frequencies are excluded, performance decreases
significantly. On the other hand, including frequencies
up to about 20 Hz can improve performance, which is
different to what previous research would suggest [56].

With applying a bandpass to coherence frequencies
from magnitudes of acceleration time series, perfor-
mance peaks at fL = 1Hz (skipping the 0 Hz constant
component) and fH = 16Hz, with an AUC of 0.9315
and an EER of 0.1418. When combining the bandpass
with initially derotating time series, peak performance is
reached with consistent fL = 1Hz and a slightly higher
fH = 18Hz, with an AUC of 0.9469 and an EER of
0.1293. These results point out that coherence frequency
range noticeably influences overall performance – and
therefore should be selected carefully. In comparison to
other constituent parts of our approach, using a coher-
ence frequency bandpass turns out to hold the highest
performance gain – while being amongst those easiest to
implement.

5.6 Coherence Frequency Collapsing Function

In previous research on shaking devices conjointly, col-
lapsing a coherence vector to a scalar coherence value
has only been done by averaging coherence. To collapse
a coherence vector, other functions are possible as well,
with some of them being frequently used in other dis-
ciplines. We evaluate the following collapsing functions
for obtaining a scalar similarity value from coherence
vectors: sum (average), median, max, euclidean distance
de, and square root distance ds. Square root distance
(Eq. 5) is the counterpart to euclidean distance (Eq. 6),
by inversing the order of squaring and taking the square
root. Additional functions such as min turned out to
cause significantly worse performance in preliminary
tests and therefore were disregarded in this evaluation.
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ds(v) =

(

∑

i

√
vi

)2

(5)

de(v) = ‖v‖ =

√

∑

i

vi2 (6)

Performance comparisons (Fig. 6) show euclidean dis-
tance slightly outperforms averaging as well as all other
tested functions when used to collapse coherence vectors
to a scalar similarity value’for both time series magni-
tudes as well as initially derotated timeseries.

When applying euclidean distance as the best per-
forming collapsing function to coherence obtained from
time series magnitudes, we obtain an AUC of 0.9023 and
an EER of 0.1670. In contrast, when applying euclidean
distance as collapsing function conjointly with initially
derotating timeseries and using a coherence frequency
bandpass filter we obtain slightly reduced performance,
with an AUC of 0.9464 and an EER of 0.1293.

On the one hand, these findings indicate that obtaining
a scalar coherence value from a coherence vector might
be improved by considering not only the mean, but alter-
native collapsing functions such as euclidean distance.
On the other hand, when used with other constituent
parts of our approach, the performance gain is minor
(or as in our case, performance even decreased slightly).

5.7 Optimal Coherence Threshold per Frequency

5.7.1 Determining optimal coherence thresholds

After deriving a scalar similarity value from a coherence
vector (obtained from two acceleration time series of
devices shaken conjointly) usually one fixed threshold
is used to separate the P and N class, as reported by
Lester et al. [34] and Mayrhofer and Gellersen [26]. Using
a single coherence threshold has a significant drawback:
all frequencies are combined within one scalar value,
therefore the threshold can only address all frequencies

(a) Time series magnitudes (b) Derotated time series

Fig. 6. Influence of coherence vector collapsing functions

on overall performance using a) time series magnitudes

and b) initially derotated time series.

at once. Another approach is to use an individual and
independent threshold for each coherence frequency.
Each such threshold represents the optimal separation
between P and N class for that coherence frequency –
hence provides better class separation on individual
frequency level. Optimal thresholds differ when derived
from either time series magnitudes or from initially
derotated time series as derotation changes coherence
values (see example in Fig. 7). Fig. 8 states the optimal
coherence threshold per frequency for using time series
magnitudes as well as for incorporating initial time
series derotation.

Fig. 7. True positive and true negative rate over coher-

ence threshold for 3 Hz. Match rates as well as coherence

values themselves for 3 Hz are higher with derotation than

with time series magnitudes.

Fig. 8. Optimal coherence thresholds per frequency.

5.7.2 Using optimal coherence thresholds

Next, we determine if a coherence vector Cxy(f) ob-
tained by shaking device x and y corresponds to the
P or N class using the optimal coherence thresholds
Co(f). We have explored two ways of doing so: using
a) a majority vote and b) the distances from the optimal
thresholds. With the majority vote, we utilize the amount
of frequencies being above their corresponding optimal
threshold. If that amount is above another predefined
threshold, the sample is classified as positive (shaken
conjointly). If it is below the threshold, it is classified
as negative (not shaken conjointly). In preliminary tests,
the majority vote turned out to perform slightly worse
than averaging the coherence vector.
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We therefore incorporate the distance dxy(f) from
optimal coherence thresholds Co(f) to coherence vector
Cxy(f) as well (Eg. 7). Its fundamental idea is that
certainty rises with the distance to the corresponding
optimal threshold. The larger the distance of a coherence
value to its corresponding threshold, the higher the
certainty that it belongs to the P respectively N class. To
obtain a scalar similarity value from dxy(f), a collapsing
function is required again. As with the previous collaps-
ing functions evaluation (Sec. 5.6), once more euclidean
distance slightly outperformed averaging the vector as
well as all other collapsing functions (Eq. 8). Note that
standard euclidean distance is not applicable anymore
as it eliminates the sign for individual distances. We
therefore use a signed euclidean distance des(v) which
preserves the sign of its components (Eq. 9 and 10).

dxy(f) = Cxy(f)− Co(f) (7)

dxy = des(dxy(f)) (8)

des(v) = a(v)0 ·
√

abs(a(v)) (9)

a(v) =
∑

i

vi · abs(vi) (10)

When incorporating the distance to the optimal coher-
ence thresholds and signed euclidean distance collapsing
with coherence obtained from time series magnitudes,
we obtain an AUC of 0.9056 and an EER of 0.1724. When
instead using it with initially derotated timeseries and
using a coherence frequency bandpass filter, we obtain
an AUC of 0.9495 and an EER of 0.1257.

5.8 Coherence Frequency Weighting

5.8.1 Weighting frequencies individually

The coherence density over frequency (Fig. 4) shows that
coherence is denser for lower frequencies, with P and
N class being visually more separated than with higher
frequencies. Consequently, lower frequencies will yield
better class separation performance than higher frequen-
cies. Performances measures from classifiers using only
a single coherence frequency to separate P and N class
support this intuition with lower frequencies in general
yielding better results than higher frequencies (Fig. 9).

Fig. 9. AUC of classifiers using a single frequency with

and without derotation.

Note that without derotation (using time series mag-
nitudes), the best performing frequency is 5 Hz. With
derotating time series, the best performing frequency
is shifted to 3 Hz. This is a side effect of derotation,
which uses the largest eigenvector of the quaternion
rotation matrix (obtained from the time series correlation
matrix). Obviously, derotation favors 3 Hz alignment
which indicates that optimal derotation can be achieved
when aligning time series around that frequency. The
dominant frequency seems to be 3 Hz when derotation
shaking acceleration time series. Although the majority
of AUC values is lower with using time series dero-
tation, overall performance is better with using dero-
tation (Sec. 5.4). This indicates that the performance
gain through best aligning lower frequencies (increasing
their corresponding performance) is higher than the per-
formance loss through concurrently decreasing higher
frequency performance. This underlines the importance
of lower frequencies for separating P and N class (note
the strong performance gain for 2 and 3 Hz). Moreover,
this is in line with our previous finding of the best per-
forming bandpass covering a narrower range of 1-18 Hz
respectively 1-16 Hz, discarding higher frequencies.

From these insights it can be concluded that indi-
vidually weighting coherence frequencies (e.g. based on
their class separation power) when obtaining a scalar
similarity value should improve results. The coherence
frequency bandpass – as a less powerful, special case
of such weighting – already showed to improve per-
formance. With the bandpass, blocked frequencies are
assigned a weight of 0, whereas passing frequencies are
assigned a weight of 1.

5.8.2 Obtaining coherence frequency weights

With our setup we weight 51 coherence frequencies in
the range [0, 1]. Assuming a coarse granularity of 0.1
(11 steps of size 0.1 in the range [0, 1]) results in a
grid search space size of 1151 – which is too large for
a simple parameter grid search. We instead utilize an
evolution strategy (ES) [58] to find an heuristic estimate
of the optimal coherence frequency weights. We use a
(1 + λ)-ES with λ = 10 mutants, randomly initialized
starting weights, an initial maximum mutation rate of
1 per generation and a maximum mutation rate reduc-
tion of 0.005 per generation. With each generation, all
parameters are mutated, and we run 919 generations
in total (corresponds to a final maximum-mutation of
0.01). To obtain reliable results we repeat the ES 100
times (for both using time series magnitudes as well as
initially derotating time series) and use the best obtained
weights. The heuristic estimate of optimal coherence
frequency weights shows that there is a decline of
weights with increasing frequency (Fig. 10) – however,
the decline is throughout unsteady.

It is important to understand that these estimated
weights represent a highly problem-adapted optimum
of weights (overfitted to our problem) and therefore
cannot be derived from discrimination power metrics
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Fig. 10. Heuristic estimation of problem specific, optimal

coherence frequency weights.

like AUC or directly reused for problems without re-
estimating the weights. Consequently, these weights just
serve as a prospect of possible performance gain using
frequency weighting and would have to be re-estimated
if applied to other problems. Using the heuristic estimate
of optimal coherence frequency weights on top of using
time series magnitudes we are able to increase AUC to
0.9420 and decrease the EER to 0.1329. When instead
applying it with initially derotating timeseries, using the
distance to optimal coherence thresholds and euclidean
distance as coherence collapsing function while replac-
ing the coherence frequency bandpass filter, we are able
to increase the AUC to 0.9551 and decrease the EER to
0.1258. These gains do not seem to outweigh the added
complexity and risk of overfitting.

5.9 Discussion of Performance Gain

Note that the order of combining constituent parts in-
fluences the associated difficulty of achieving a perfor-
mance gain (Fig. 11, Tab. 1). For constituent parts applied
earlier more room remains to increase performance.

The highest performance gain is achieved by including
coherence frequency weighting or its special case, the co-
herence frequency bandpass. This emphasizes the impor-
tance of carefully selecting coherence frequencies for hu-
man body motion analysis tasks. With frequency weight-
ing, implementation complexity is worth mentioning: we
use heuristically obtained estimates of optimal weights
and these weights have to be re-estimated when ap-
plied to different problems. In contrast, the coherence
frequency bandpass provides an easier to implement
alternative to frequency weighting. It achieves optimal
performance by including acceleration frequencies of up
to about 20 Hz. This supports findings from previous
research which suggest – against common assumptions –
that human body movement includes useful information
up to or even beyond a frequency of 20 Hz.

The second highest performance gain is achieved us-
ing optimally derotated 3D acceleration time series in
consecutive analysis instead of using acceleration time
series magnitudes. Computing time series magnitudes
strips out rotation information contained in original 3D
time series. In contrast, with optimally derotated time

series, parts of rotation information remain (namely
changes in rotation over time), which is supported by
improved performances. Consequently, derotation of 3D
acceleration time series should be considered before
doing consecutive analysis.

Including distance to optimal threshold and modified
coherence vector collapsing functions achieve minor per-
formance gains. With the first, the coherence threshold
for separating classes is chosen optimally for each fre-
quency. With the latter, euclidean distance turned out
to slightly outperform the frequently used averaging of
coherence on overall performance. When applied indi-
vidually, both achieve small performance gains. When
applied in combination with derotated time series and a
coherence frequency bandpass, their performance gain is
negligible, hence – depending on the problem – they can
be excluded from implementation in favor of frequency
bandpass and optimal derotation of time series.

6 IMPLEMENTATION AND USER STUDY

Based on findings from our evaluation we implemented
our approach on Android for mobile phones and wrist
watches.6 In the implementation the link is established
as soon one devices starts recording an active segment
and acceleration recordings are aggregated on the mobile
phone afterwards. In case one device did not detect an
active segment, unlocking is aborted and the user is
notified. Further, the user is notified about all successful
or failed ShakeUnlock attempts on both mobile phone
and smart watch. This ensures the user is informed in
case case of the mobile phone being under control of
an attacker. Based on our finding, for active segment
similarity analysis we chose to include optimal derota-
tion of 3D acceleration time series, applying a coherence
bandpass filter and collapsing the remaining coherence
vector to a single scalar value using euclidean distance.

Using our implementation we conduct a user study
to quantify the impact of attacks on our approach, as
summarized in section 3, and to measure upper bound-
aries (which are expected to break unlock security). The
study featured a total of 15 pairs of participants pair-
wise attacking each other 20 times per attack scenario
(which results in a total of 600 attacks per scenario).
For cooperative attacks, participants were told to utilize
any cooperative strategy or tool at hand except for
touching the other device or participant. This lead to
participants using verbal communication, music, or even
a metronome as help for synchronization.

From study results, we found observatory attacks to
be successful on average with a rate of 0.20, cooperative
attacks with 0.35, and handshaking attacks with 0.90
(all with a threshold of 0.522, which corresponds to a
TPR of 0.82 computed from ShakeUnlock database data

6. After review, the code will be publicly available at http://www.
usmile.at/downloads.
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TABLE 1

Contribution of constituent parts of our approach to overall performance, applied individually and atop previous parts.

Implementation
complexity

Individual Atop previous parts
Constituent part AUC EER AUC EER
Time series magnitudes low 0.8990 0.1777 — —
Derotated timeseries medium 0.9214 0.1562 — —
Coherence frequency bandpass low 0.9315 0.1418 0.9469 0.1293
Coherence vector collapsing function low 0.9023 0.1670 0.9464 0.1293
Distance to optimal coherence threshold medium 0.9056 0.1724 0.9495 0.1257
Coherence frequency weighting high 0.9420 0.1329 0.9551 0.1258

(a) Individual contribution per constituent part (b) Combined contribution of constituent parts

Fig. 11. ROC curve stating the contribution of constituent parts of our approach to overall performance.

only7). On the one hand – in contrast to [26] – in our
setup, forging the second shaking pattern seems feasible
with a rate of about 0.2. We infer that this is caused by
the wrist as joint in between devices (instead of devices
being pressed against each other) – which causes sensed
acceleration to be different on devices when shaking
them, consequently lowering the required similarity of
acceleration records for unlocks as well as attackers. On
the other hand, although this is a realistic attack, it is
connected to a certain effort, as attackers are required to
a) acquire an identical looking device and b) replace the
user’s phone with the proxy device. From study results,
we further consider both cooperative and handshake
attacks to break our approach in terms of unlock security.
We argue that this is acceptable, as we also consider them
unrealistic/easily detectable in real life unlock situations.

7. The EER composed from one-vs-all comparisons using positive
samples of the ShakeUnlock database and negative samples only
from the observably attack study is slightly lower with 0.19; using
cooperative attack data instead it is 0.23 and with handshake attack
data it is 0.45.

7 CONCLUSION

In this article we proposed to conjointly shake an un-
locked, mobile token device and another mobile device
still locked to transfer the authentication state from
the token device to the other device and unlock it. A
common use case features a wrist watch as token device
strapped to the wrist and a mobile phone held in the
same hand. Both are pre-paired and can communicate
over a secure channel. While devices are shaken, we
record 3D acceleration time series on both devices. These
are analyzed for similarity to decide if both devices
have actually been shaken conjointly. Therefore, shaking
devices serves as secure trigger mechanism to transfer
the authentication state. Our approach has the advantage
of requiring only acceleration sensors, which are com-
monly integrated in mobile devices. Further, acceleration
recording can be done power efficiently using dedicated
hardware – similar to background step counting, which
is already available in several off-the-shelf mobile de-
vices from various OEMs.

The evaluation of our approach includes the contri-
bution of constituent parts to the system performance.
We found coherence frequency filtering and optimal
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derotation of 3D acceleration time series to be most
effective in improving the distinguishability of legitimate
unlocks and potential attacks. We further implemented
our approach on off-the-shelf Android devices. Using
live data from our implementation, 15 pairs of partic-
ipants tried to attack each other and trigger unlocks in
different attack scenarios. Results indicate that observa-
tional attacks have a success rate in the range of 0.2.
This is higher than anticipated, but seems acceptable,
as for this, attackers at first need to a) replace users’
devices in secret with mock devices and b) need to shake
the obtained device at the same time as users (with
users being informed about unlock attempts), creating
significant barriers for a successful attack. We conclude
that ShakeUnlock is a mobile device unlock approach
complementary to existing unlocking approaches (e.g.
using PIN, password, unlock pattern, or fingerprint) –
similar to these it solves not all, but parts of the problem
of unlocking mobile devices during everyday usage.

Future work should investigate long term acceptance
of ShakeUnlock with an extensive usability study. Such
a study needs to consider e.g. muscle memory effects,
its learning rate, and effect on usability over time. A
short study would likely only give limited insights and
possibly be biased towards negative feedback, as it might
not be able to account for learning a muscle memory or
related effects. Hence, this study should be performed
longitudinally, spanning several weeks or months.
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interaction. René has contributed to over 60 peer-reviewed publications
and is a reviewer for numerous journals and conferences. He received
Dipl.-Ing. (MSc) and Dr. techn. (PhD) degrees from Johannes Kepler
University Linz, Austria and his Venia Docendi for Applied Computer
Science from University of Vienna, Austria.


