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ABSTRACT

The inherent weakness of typical mobile device unlocking
approaches (PIN, password, graphic pattern) is that they
demand time and attention, leading a majority of end users
to disable them, effectively lowering device security.

We propose a method for unlocking mobile devices by
shaking them together, implicitly passing the unlocked state
from one device to another. One obvious use case includes a
locked mobile phone and a wrist watch, which remains un-
locked as long as strapped to the user’s wrist. Shaking both
devices together generates a one-time unlocking event for
the phone without the user interacting with the screen. We
explicitly analyze the usability critical impact of shaking du-
ration with respect to the level of security. Results indicate
that unlocking is possible with a true match rate of 0.795
and true non match rate of 0.867 for a shaking duration as
short as two seconds.
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Categories and Subject Descriptors

D.4.6 [Security and Protection|: Authentication; 1.4.6
[Segmentation]: Time series segmentation; 1.2.11 [Dis-
tributed Artificial Intelligence]: Coherence and coor-
dination

1. INTRODUCTION

Current personal mobile devices are ubiquitous. They are
no longer only being used for calling and texting purposes
but they offer a multitude of services ranging from simple
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localized tourist guides to city-scale wireless network ser-
vices and multiple nation-wide mobile payment and identity
management applications. Under the “Bring Your Own De-
vice” (BYOD) trend, more and more private mobile devices
are integrated in company networks. As a consequence, an
amount of personal as well as company data which deserves
adequate protection is stored and processed by these mobile
devices.

Consequently, device unlocking mechanisms have been de-
veloped that restrict access to mobile devices until being un-
locked directly before usage. However studies show that a
majority of users do not use any unlocking mechanism for
their mobile devices [3, 6, 21] with usability drawbacks being
the main reason. Usability of the currently widely deployed
mobile device unlocking mechanisms (PIN, password, and
graphic pattern) suffers from two drawbacks. First, they re-
quire user attention as users have to keep their unlocking
secret in mind and have to look at the screen to perform
the unlock. Second, they cause users to spend time to enter
their secret to the mobile device. Traditional desktop/laptop
computers usually features a full sized keyboard for captur-
ing user input quickly and reliably. In contrast, entering
a secret can be difficult and time consuming especially on
mobile devices because of their limited user interfaces (e. g.
small on screen display with small keys and haptic feed-
back only on keypress for mobile phones). Further, desk-
top/laptop computers are usually unlocked once and then
used for a longer period of time — which is different for typ-
ical mobile device usage. Users tend to use mobile devices
more frequently and for shorter time periods, leading to a
higher amount of unlocking events. Therefore, mobile users
face usability issues caused by unlocking mechanisms that
are even more significant than those already well-known for
desktop users. There typical examples are: short passwords,
using the same password over and over or even deactivating
locking mechanisms in the first place — to increase usability.

Besides these usability issues the mentioned mobile device
unlocking mechanisms are vulnerable to different attacks,
such as the shoulder surfing [22, 24] or the smudge attack [2,
26] (attackers screening the device display after the user au-
thenticated using a graphic pattern in order to observe the
residual smudge that might remain on the display, thereby
observing the the unlocking secret).



1.1 Shaking devices to transfer authentication
state

Many users already carry more than one mobile device
(such as a mobile phone and a wrist watch). Hence unlock-
ing a currently locked device L can be done by implicitly
transferring the authentication state from a currently used —
therefore already unlocked — device U of the same user. This
is especially interesting for mobile devices as they can remain
unlocked for different durations. For example, wrist watches
may remain unlocked as long as they are mounted on their
legitimate users’ wrists (under the assumption that only the
legitimate owners will have control of that device as long as it
is strapped to their wrist), while for mobile phones it might
be necessary to lock them whenever users put them aside
(as they could immediately be taken by malicious users).

We propose a method for transferring the authentication
state from an already unlocked device U to another, still
locked device L by shaking those devices together — such as
from a wrist watch mounted on the wrist to a mobile phone
held in the same hand. We assume that device U is unlocked
by observing that it is with the correct user, such as with
a wrist watch locking itself as it is taken off the wrist. Our
approach is intended to work even when devices are a little
apart from each other, such as in the wrist watch/mobile
phone scenario. Further the approach is intended to not
incorporate any biometric user information, but should work
amongst different users for the same devices. Assuming the
devices U and L are owned by user A, unlocking should
work for user A shaking the devices U and L together, but
should work as well in case user B is shaking the devices U
and L together.

Shaking devices together has been found intuitive as well
as fast and convenient to use for e.g. establishing a secure
connection between devices in previous research [5, 9, 11,
15, 4, 17]. An advantage of shaking devices over e.g. si-
multaneously pressing a button on both devices or bumping
devices against each other (which can easily be forged by
attackers [23]) is, that shaking patterns are hard to fake. It
has been shown that shaking devices provides a sufficient
level of assurance that both devices have been shaken to-
gether, as it is hard to accurately recreate shaking patterns
on a remote device [20]. Consequently, for attackers it is
hard to trick a device they got under their control into un-
locking, by shaking it simultaneously with the user shaking
the counterpart device. For the same reason it is unlikely
to accidentally unlock a mobile device placed in a trousers
pocket or carrying bag, e.g. while walking.

In this paper, we build upon previous research on pairing
mobile devices — and extend them from rare, explicit au-
thentication events to regular, implicit usage throughout a
typical day. The main differences are:

e From usability point of view, the significant difference
is the inversion of priorities from security to usability
(see below).

e From security point of view, we do not aim to create a
long-lived association between devices but trigger one-
time unlocking events on remote devices.

e From practical point of view, mobile devices are farther
apart (not held with the same hand as in previous
published research, but with a distance of around 10—
15cm and a non-static joint in between).

Although similar data analysis methods (cf. section 3) are
applicable to both the previously discussed and our new use
cases, relevant parameters (cf. section 5) and protocols are
noticeably different.

1.2 Secure channel vs. device unlocking

In previous research, shaking is used for pairing mobile de-
vices to establish a secure communication channel between
them (also called the bootstrapping problem [18, 14]). There
are two essential differences in requirements for shaking mo-
bile devices when establishing a secure channel — which is
done once for each pair of devices — and when unlocking
them — which is done frequently.

First, for establishing a secure channel, usability is impor-
tant, but not the highest priority. It may take some time
(within reasonable limits) and require the user’s attention
(having the user consciously in the loop is even beneficial
for the perceived level of security). For unlocking a device,
usability is critical and the highest priority when designing
a solution. It must only take a small amount of the user’s
time and require as little of the user’s attention as possible.
Otherwise, users will disable the unlocking mechanism.

Second, for establishing a secure channel between mobile
devices it is essential to prevent any possible on-line and off-
line attacks, including brute-force dictionary attacks. If the
channel is compromised, an attacker can read or manipulate
all (recorded) information on that channel at a later point in
time. For unlocking mobile devices, we have to focus on on-
line, real-time attacks as part of the inherent user interaction
of unlocking a device with a sufficiently short time window
(a few seconds).

In the scope of this work, we assume the two mobile
devices to already share a secure communication channel.
Therefore, we will not discuss the required device authenti-
cation and secure data transmission protocols. Our analysis
starts with the second step of exploiting such a channel to
automatically unlock one of the devices.

1.3 Improvements in usability

Typical usage scenarios for our approach are: users pick
up their mobile phone with the hand the wrist watch is
strapped to and shake it briefly for unlocking. Alternatively,
they take it out of their pocket while walking, then shake it
instead of having to look at or interact with the display.

This is one advantage in usability of shaking over classical
mobile device unlocking approaches: users don’t need to
look at or interact with the display of the mobile phone at
all for performing the authentication. Another advantage
is that shaking is not knowledge based (does not involve a
secret that users need to remember). As users are going to
carry more and more devices in the future, with knowledge
based approaches they would either need to use different
secrets for unlocking these devices (which has an impact on
usability as it raises the cognitive load). Or they would use
the same secret over and over (which is a well known risk in
terms of security).

We argue that the most critical factor in terms of usability
will be the time it takes users to perform the unlock. One
important observation by Zezschitz et al. [25] is that the av-
erage time taken to enter a PIN on a mobile device is in
the range of 1.5s and the average time for drawing a graph-
ical pattern is in the range of 3s. More thorough analysis
of user expectations is difficult because real-life experimen-



tal conditions negate additional questions or external user
observation for comparative studies. We currently assume
these 1-3s as a reasonably acceptable delay considering the
short interaction times with mobile devices. Therefore we
use a shaking duration of 2s to provide comparable speed
to the well-known PIN lock, but require significantly less
user attention. The same argument holds in comparison
to graphical patterns as the second well-known unlocking
method.

Summarizing, our novel contributions are:

e In contrast to previous research we focus on a different
use case with the implications on usability, security,
and data analysis parameters discussed above.

e We utilize data from devices that are located apart
from each other, specifically being strapped to the wrist
and held in the hand. Further, we use accelerometers
embedded in off-the-shelf devices, namely in a wrist
watch and a mobile phone instead of custom made
or research oriented sensors with better accuracy or
higher sampling rates.

e Using this setup, we record the u’smile ShakeUnlock
database of mobile devices being shaken concurrently,
which we use for evaluating our approach.

e We analyze the impact of the usability critical shaking
duration on unlocking the device as the trade-off be-
tween usability and security. Using a shaking duration
of only two seconds we achieve a true match rate of
0.795 and true non match rate of 0.867.

2. RELATED WORK

Shaking mobile devices has been tackled by a significant
amount of research over the past 10 years: starting with the
user interaction method of moving devices together [11, 1,
10] (including the popular but insecure [23], now discontin-
ued mobile phone application “Bump”), the associated data
analysis methods for segmentation, feature extraction, and
classification [15, 12, 17, 7], and different protocols for de-
riving shared secret keys from accelerometer data of mobile
devices shaken [20, 19, 4, 9] or swayed together [13] or from
the wireless signal strength readings of devices moved to-
gether [5]. The standard use case for the security conscious
publications was pairing or associating devices previously
unknown to each other (also referred to as the bootstrap-
ping problem or as human verifiable device authentication).
In contrast we focus on shaking as a user interaction method
for unlocking of previously paired devices.

In terms of required data analysis methods, comparing
accelerometer time series in both time domain [11, 4, 17, 9,
13]. and frequency domain [15, 20] has been studied. For
an overview of the different features, we refer to [7]. Al-
though comparison in time domain might yield higher rates
of entropy per second of shaking data [9], we choose to do
the analysis in frequency domain for the same practical rea-
sons discussed previously. In real-life deployments of this
method, two (or multiple) devices will independently record
their local accelerometer time series, and we cannot real-
istically assume perfect synchronization of sampling inter-
vals and start-of-sampling offsets. Additionally, sensors will

physically be aligned in different coordinate systems. Re-
ducing the three dimensions to the magnitude of acceler-
ation and comparing the single-dimensional time series in
frequency domain is more robust against jitter, drift, and
start-of-sampling offset, as well as rotational components
that make it difficult to filter gravity from movement ac-
celeration. Therefore, our data analysis approach (cf. sec-
tion 3) is based on the respective previous approach in fre-
quency domain, specifically the use of the coherence met-
ric [15] based on “active segments” sampled independently
on two devices [20]. Applying one of the other published
approaches in time domain [4, 9, 17, 13, 8] would require
an additional synchronization step in the communication
protocol, but could potentially provide higher entropy. A
practical experiment on power-efficient, accurate time syn-
chronization between mobile device or post-hoc correction
of synchronization errors is a potential extension for future
research.

The special aspect of devices being jointly moved but
physically located slightly apart has been also studied by
Fujinami and Pirttikangas [8] in the form of a user’s hand
holding a toothbrush. We deal with the same issue for ro-
bust comparison of time series, but additionally consider the
security and usability implications.

In terms of security, only a subset of the previous pub-
lications on shaking explicitly considered malicious attacks
on this user interaction method [9, 20, 4, 13, 5]. We use a
different threat model because we aim to secure one-time un-
locking trigger events valid for a limited time instead of long-
lived shared secret keys for secure communication channels
(cf. section 3.3). However, we can build upon the previous
result that a dedicated attack on shaking authentication by
trying to mock the movement of one device while the other
is independently shaken by another person is impractical,
even if an attacker is able to visually observe the device
movement [20, 19].

3. APPROACH

We shake a locked mobile phone together with an un-
locked wrist watch in order to transfer the authentication
state from the watch to the phone and unlock it. Unlocking
is done in two major steps: recording acceleration time se-
ries and extracting active acceleration periods separately on
each device, then determining the similarity of active periods
across devices (see figure 1). The result is a single one-time
unlocking event on the mobile phone; in contrast to pair-
ing devices, no data is kept after the similarity comparison,
not even in the form of cryptographic key material. This
distinction is important for the security analysis discussed
below.

3.1 Acceleration recording and active segments
extraction

In our approach, devices independently and continuously
record acceleration time series. We argue that this can be
achieved without necessarily draining the device batteries
by including hardware specifically designated to recording
acceleration. Such hardware is slowly becoming available
in off-the-shelf mobile devices with the initial use case of
background step counting. Similarly, power efficient hard-
ware has successfully been used to e.g. continuously record
audio [16]. Using acceleration time series, devices continu-
ously check for the start of an active period (in which users
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Figure 1: Data processing chain used in the Shake-
Unlock approach.

actively shake their device). This is achieved by monitoring
the variance of the magnitude of 3 axes accelerometers with
a sliding window as stated in [19](we use a sliding window of
0.5s). If the variance within this window rises above a cer-
tain threshold this marks the start of an active period (we
use a variance threshold of 6 - 10743%). As a device detects
such a start, it records acceleration data for a certain time
(e.g. 2 seconds) in which users shake their devices (see fig-
ure 2). This acceleration data is called “active segment” and
used later for determining if devices were actually shaken
together.
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(b) Active segment detected on wrist watch

Figure 2: Active segments detected independently
on the mobile phone and wrist watch.

For usability reasons an application implementing this ap-
proach should give feedback to users about starting and
stopping recording acceleration, as users are expected to

shake their device throughout the fixed recording time — oth-
erwise the unlocking will be aborted. After detecting and
extracting active segments each device preprocesses it’s re-
spective active segment. Preprocessing is done by removing
the gravity per axis (approximated by the mean accelera-
tion per axis throughout the active segment), calculating
the magnitude and normalizing it to the range [—1, 1].

The active segment magnitudes extracted on the wrist
watch and mobile phone are used as basis for determining
if devices were actually shaken together. Therefore one of
these devices sends it’s active segment magnitude over the
secure channel to it’s counterpart device for further process-
ing. Our approach does not restrict on which device further
processing is done. But as both devices are assumed secure
and connected by a secured channel, the natural choice is
to process data on the mobile phone. This allows the mo-
bile phone to immediately use the unlock decision without
further sending data between devices. Additionally, calcula-
tions are usually faster on mobile phones over wrist watches
due to higher processing power.

3.2 Similarity of active segments

After active segments have been aggregated on the mo-
bile phone, we determine the similarity of those segments to
decide if the devices were actually shaken together. There-
fore we adapt a weighted overlapped segment averaging form
of magnitude squared coherence by Lester etal. [15]. This
approach that has been successfully used for similarity de-
tection in previous research [20] (see figure 3).
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Figure 3: Overview of similarity measurements be-
tween active segments of device xz (mobile phone)
and y (wrist watch), computed on the mobile phone.

At first we divide the pairwise active segments of devices x
(mobile phone) and y (wrist watch) into n overlapping slices
by multiplying them with an according window (such as the
Hamming or Hann window). Slices are transformed into the
frequency domain. For pairwise slices z,n and y,n, first,
the coherence Cyy,n(f) is calculated using the cross spectral
density Szy,n and the power spectral densities Sz.,» and
Syy,n- Then those coherences for all n slices are averaged
together to obtain an overall coherence Cyy(f) (see equa-
tions 1 and 2).
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In order to obtain a single, scalar similarity measure Cyy,
the coherence Cyy(f) is averaged up to a cutoff frequency
fmax, which is important for not incorporating the frequen-
cies that are not correlated to users shaking their device (see
equation 3). In previous research [20] a cutoff frequency of
fmax = 40Hz has proven useful, which we are adapting for
our approach as well.

fmax
Coy= 1. / Cay(f) 3)

v =
f max

To finally decide if the mobile phone should unlock we
apply a threshold T' = [0, 1] to the scalar similarity in order
to obtain a binary accept/reject decision.

The main reason for our approach processing the shak-
ing acceleration time series of both devices in the frequency
domain is robust processing. Given the assumption that a
constantly active link between the devices (to stream raw
sensor data from one device to the other using constant ra-
dio traffic) would drain their batteries, both devices should
independently estimate the start of active segments, which
can be done in the background on a low-power microcon-
troller without involving the main CPU (cf. [16] for speaker
detection or current Apple iPhone 5 devices for background
step counting based on accelerometer data). However, as
devices are apart from each other and they are expected to
experience slightly different levels of acceleration, they will
trigger the start of active segments at a slightly different
time for both devices — which will further lead to the ac-
tive segments being slightly shifted in time. Moreover, we
have to assume additional sources of sampling errors such as
imprecise (and slightly different) clock cycles for sampling
the accelerometers and therefore drift and jitter in inter-
step sample timing. Hence without direct synchronization,
the similarity measure has to handle slightly asynchronous
data. Processing such data in frequency domain works more
reliably compared to processing in time domain.

One possibility to obtain time synchronization without a
constantly active radio channel is to establish a connection
between the devices as soon as either one or both devices
detect active shaking. However, this requires a radio link ca-
pable of establishing this connection within a single sample
period (e.g. 10ms for 100 Hz sampling rate). This is inap-
plicable with currently deployed off-the-shelf wireless stan-
dards on mobile devices such as Bluetooth, which can take
up to several seconds even after having been paired before.
When using the connection creation time as synchronization
reference (1-way handshake) devices are possibly not syn-
chronized by the time the connection has been established
— which consequently also causes data recording to start at
different time. Alternatively shaking is possibly over when
both devices start recording data synchronously after the
connection has been established (2- or 3-way handshake).

3.3 Threat model

As devices are initially paired, we assume a secure wire-
less channel between devices. Therefore, traditional passive

attacks (e.g. eavesdropping) are impossible when none of
the devices are compromised. But assuming that the locked
mobile phone is physically controlled by an attacker (after
loss or theft), an active attack to unlock it could be possible.
These attacks are limited to:

1. Periods of the user accidentally shaking the counter-
part device (e.g. when toothbrushing), as otherwise
unlocking attempts will be left unanswered.

2. Physical proximity, as both devices have to be in signal
range of each other.

It has also been shown that it is impractical for attack-
ers to shake a mobile device accordingly when observing
the legitimate user shaking their device concurrently [20].
This would require a mechanism to artificially shake a mo-
bile device based on observed shaking, which we assume im-
practical as it will raise the cost/benefit ratio for attack-
ers. For example: we assume the user’s wrist watch is
compromised by having malware installed, which contin-
uously records acceleration data and transmits it to the
attackers in real time. Such malware could be embedded
in other applications, therefore installed by unaware users
themselves — without attackers requiring access to the un-
locked wrist watch. Even when attackers have access to the
user’s acceleration time series, they would still need to con-
currently (in real time) shake the mobile phone in a pattern
matching the wrist watch closely enough to fall above the
coherence threshold T', which seems impractical.

3.3.1 Malware accessing the secure channel

The scenario changes assuming that the wrist watch is
compromised to a level on which installed malware can ac-
cess the secure channels — such as to the user’s mobile phone —
to send data. Using such malware (which requires root per-
missions on an Android devices to manipulate active net-
work connectivity from other apps) an attacker could con-
tinuously send forged acceleration data from the user’s wrist
watch to the mobile phone. We assume that this forged ac-
celeration data is structured in a way that attackers can
artificially shake an object accordingly. Hence, if attackers
bring the mobile phone under their control they can un-
lock it in case they can shake it according to their forged
acceleration data. In order to prevent such attacks, the un-
locking software needs to ensure it receives data from it’s
correct counterpart, which can be achieved by using cryp-
tographic signatures for mutual authentication of all mes-
sages/packets.

3.3.2  Tricking users into shaking behavior

A different approach for attackers to unlock the mobile
phone could be to trick the user into shaking behavior the
attackers want — as they might be able to somehow attach
the mobile phone to the same source of movement and accel-
eration. Theoretically this could be achieved by an attacker
shaking hands very hard with the legitimate user, in case
the user is using the arm with the wrist watch strapped on
as well as the mobile phone being attached to the attackers
wrist. None of the devices can recognize the ongoing attack,
as they are actually shaken in a legitimate way.

Practically, for this scenario the attacker must prevent
users from recognizing their mobile phone, which has to be
physically close to the wrist watch in order to experience the



same acceleration. As this is a conceptually easy to perform
non-technical attack, we expect attackers to be inventive
when it comes to hiding the presence of the users’ mobile
phone. Consequently this could become a potential attack
scenario to our approach — although it still requires a local
and highly personalized attack.

4. U’SMILE SHAKEUNLOCK DATABASE

We recorded the u’smile ShakeUnlock database’ which
contains 29 participants shaking a wrist watch (strapped to
their wrist) and mobile phone (held in the hand). For each
participant, we recorded 5 shaking samples each for four dif-
ferent setups (see table 1), which results in 20 samples per
participant and device, and to 1160 samples in total — which
overall reflect large differences in shaking style, vigor, and
frequency.

Setup Watch Phone Posture
1 left wrist left hand sitting
2 right wrist right hand sitting
3 left wrist left hand standing
4 right wrist right hand standing

Table 1: The u’smile ShakeUnlock database features
5 samples for each 4 different setups per participant.

For data collection, we used an Android application record-
ing 3 axes accelerometer time series and storing them in
the form of comma separated value files locally on each de-
vice. The devices are connected over a Bluetooth channel,
sending start/stop recording instructions as well as experi-
ment metadata (e.g. subject ID) in a synchronized fashion
when starting/stopping data recording. We explicitly note
that this synchronization is only facilitating an easier exper-
iment, but that it is not required for real-world use outside
the recording setup.

Before data recording participants strapped the watch to
their wrist and grabbed the phone with the same hand (see
figure 4). Immediately before starting data recording all
participants were given the same, brief instructions: “Shake
the devices as you would shake them intuitively, but shake
them a bit harder/a bit quicker and try to not bend your
wrist while shaking.”.

Each recording has a total length of 13s: 10s of active
shaking and 3s of neutral device movement. Participants
started the recording by pressing a button on the mobile
phone and started shaking. They were informed to stop
shaking by audio and vibration feedback from the phone af-
ter 10s of recording (therefore active shaking is close to 10s
for most samples) — with the devices continuing to record
for 3s after the notification.

In total we recorded data from 25 male and 4 female par-
ticipants, with an average age of 27 years and from different
backgrounds and professions (we do not distinguish by pro-
fession, age or gender as it does not seem important for
performing a simple shaking movement). Further we used a
mix of different devices running Android 4.0 or above and
table 2). For 26 participants we used a Samsung Galaxy S4
mobile phone (model GT-I9500) together with a Samsung

!The u’smile ShakeUnlock database is publicly available for
download at http://usmile.at/downloads.

(a) Front side

(b) Rear side

Figure 4: Phone and watch placement for all setups,
with the watch being strapped just as hard as nec-
essary to prevent slipping during shaking.

Galaxy Gear wrist watch (model SMV700). For the remain-
ing 3 participants we used a Moto G mobile phone (XT1032)
together with a Simvalley Mobile wrist watch (model AW-
420.RX) to analyze how dependent various parameters of the
data analysis pipeline are on the specific recording hardware.
The recording acceleration sensor sampling rate was fixed on
operating system side to 100 Hz. Therefore any inaccuracies
in sample timing are caused by the operating system itself
which would also occur in other implementations of our ap-
proach.

Pair of devices Male Female Total
Galaxy S4, Galaxy Gear 23 3 26
Moto G, Simvalley watch 2 1 3

Table 2: Amount of recordings done per pair of de-
vices and gender of participants.

S. EVALUATION

Our goal is to utilize short (therefore usable) periods of
e.g. two seconds of actively shaking devices. We use the
u’smile ShakeUnlock database to quantify the impact of
such short shaking on determining if devices were actually
shaken together. First we extract active segments of differ-
ent lengths (simulating different shaking durations) for all
recordings of all participants. Then we perform coherence
measurements to determine the reliability of detecting that
devices were actually shaken together. We further evaluate
the impact of shaking devices with the dominant and non
dominant hand as well as the impact of sitting/standing
while shaking.

Additionally we quantify the impact of devices being apart
from each other during shaking (being held in the hand and
being strapped to the wrist). To compare our results to re-
sults of devices being pressed against each other we apply
our approach to the “shake well before use” database [20]>.

2From the “shake well before use” database we use the
recordings of dataset Nr. 1 in which devices were shaken
both either in the right or left hand.
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Figure 5: Active segments from [20] detected inde-
pendently for sensor 1 and 2.

In this database devices were pressed against each other and
the start of the recordings on both devices were exactly syn-
chronized (see figure 5; note the visually observable similar-
ity between the time series in contrast to differences in our
data in figure 2).

To report the error rates of unlocking we measure the true
match rate (TMR) and the true non match rate (TNMR).
The TMR represents true positive identifications of devices
being shaken together. In contrast, the TNMR represents

true negative identifications of devices being shaken together.

The false match rate (FMR) typically used for receiver op-
erating characteristic (ROC) curves is the inverse of the
TNMR.

To measure the TMR we compare datasets of devices that
were actually shaken together (positive class size Cp). To
measure the TNMR we compare datasets with all other
datasets of devices not shaken concurrently (negative class
size Cn) — which simulates a possible attacker trying to un-
locking the device by shaking it concurrently to the user (see
equation 4 and table 3).

Cp = Sub - Sets )
Cn =2-Sub-Sets- (2 Sub - Sets — 1)
5.1 Parameterization

For our evaluation we adapt parameters from successful
previous research on shaking time series comparison [20].

Database Sub Sets Cp Cn

u’smile ShakeUnlock 29 20 580 672.2K
Shake well before use [20] 51 20 1020 2.1M

Table 3: Amount of tests performed, resulting from
different numbers of subjects (Sub) and datasets
(Sets) in databases, to check for positive matches
(positive class size Cp) and negative matches (nega-
tive class size Cy) in order to obtain overall match
and error rates.

For determining the start of users actively shaking their de-
vice we use a 0.5s rectangular sliding window with a vari-
ance threshold of 6 - 1074%2 — which we found to reliably
and accurately detect the start of active shaking (see fig-
ure 2)®. Active segments are detected and extracted for
all data samples independently, then cropped to a length of
1.2s-5s to simulate users shaking devices that long. To cal-
culate the coherence based similarity of active segments first
we use a 1s Hann/Hanning sliding window with % overlap
to split acceleration time series into slices. To average the
overall coherence of all slices we use a cutoff frequency of
fmax = 40Hz. To finally obtain a accept/reject decision we
apply a coherence threshold 7' = [0, 1].

5.2 Impact of shaking duration and devices
being apart from each other

Results show that increasing shaking durations decreases
overall error rates — for devices being held in the hand and
strapped to the wrist, as well as devices being pressed against
each other (see figure 6).

For devices being strapped to the wrist and held in the
hand per shaking duration key metrics are listed in table 4.
The equal error rate (EER) states the error rate for TMR =
TNMR. Listed TMR and TNMR values were selected using
the square root of the minimum squared error vMSER * (see
equation 5) as representing the ROC curve point closest to
TMR = TMR = 1.

VMSER = |/min(FNMR? + FMR?) (5)

Using a shaking duration of 2s — which we assume is just
short enough for users to consider shaking as an unlocking
approach — we obtained an EER of 0.176 and a TMR/TNMR
of 0.795 and 0.867, respectively. These rates assume that
both devices are shaken concurrently. Consequently, attack-
ers trying to unlock the mobile phone which they previously
got under their control have to perform this attack in paral-
lel to users shaking their wrist watch accordingly. Further,
the unlocking security level can easily be raised for users
willing to shake their device longer (which could be chosen
per user and application individually).

Using data of devices being pressed against each other for
2s of shaking, we obtain an EER of 0.100 and a TMR/TNMR
of 0.885 and 0.925, respectively (see figure 6(b)) — which is
observably better over devices being apart form each other.

3For data from the shake well before use database we use a
variance threshold of 2.25 - 1073?2 according to their find-
ings.

4/ MSER represents the euclidean distance between the
point TMR = TMR = 1 and the TMR/TNMR closest to
this point.



1.0

0.8
l

TMR
0.4

0.2

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

FMR
(a) Devices at hand and wrist

1.0

0.8
1

TMR
0.4

0.2

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

FMR
(b) Devices pressed against each other

Figure 6: ROC curves with true match rate (TMR) and false match rate (FMR) for different durations of
users shaking their device, with the devices being strapped to the wrist and held in the hand using our
database (left) and being pressed against each other in one hand using the database of [20] (right).

Shaking EER TMR TNMR +MSER
1.2s 0.343  0.637 0.677 0.513
1.4s 0.240 0.733 0.789 0.378
1.6s 0.203  0.785 0.808 0.304
1.8s 0.182  0.806 0.829 0.274
2.0s 0.176  0.795 0.867 0.289
2.5s 0.153  0.819 0.889 0.256
3.0s 0.139 0.838 0.901 0.229
4.0s 0.121  0.856 0.902 0.203
5.0s 0.122  0.846 0.922 0.218

Table 4: Best true match rates (TMR) and true non
match rates (TNMR) for different durations of users
shaking their device.

These results support the intuition that the closer devices
are together, the harder it is for an attacker to trick the ap-
proach into unlocking the mobile phone using non-correlated
shaking. Furthermore, this suggests that an attacker being
able to attach an acceleration sensor at the user (e.g. in
clothing) will not be able to make immediate use of recorded
acceleration data, except for when the acceleration sensor is
very close to the wrist or hand, as the recordings will differ
too much from the actual device acceleration.

Based on the shake well before use database, Mayrhofer
and Gellersen [20] report a TMR and TNMR of 10.24 and 0,
respectively. This differences to our findings are caused by
utilizing a different threat model and differently sized neg-
ative classes C'v (time series used to compute the TNMR).
To obtain the TNMR, their evaluation uses a small dataset
of 177 x 2 time series recorded by shaking devices simultane-
ously, but not with the same hand. Based on the resulting
177 time series comparisons, the TNMR is computed. In
contrast, we utilize the same dataset to obtain the TNMR
as well as the TMR: we compare all time series not recorded
by shaking devices simultaneously with the same hand to
compute the TNMR. Consequently, our evaluation uses a far

larger negative class (2.1 million comparisons for the shake
well before use database) to obtain the TNMR.

5.3 Impact of sitting/standing and shaking with
dominant/non dominant hand

Figure 7 shows the impact of shaking devices with the
dominant and the non dominant hand as well as sitting or
standing while shaking the devices based on our database.

It is clearly visible that shaking devices with the dominant
hand (represented by the brighter lines in the left graph)
with an EER of 0.168 and a TMR/TNMR of 0.811/0.870
for 2s of shaking consistently causes lower error rates com-
pared to shaking devices with the non dominant hand (rep-
resented by the darker lines) with an EER of 0.184 and a
TMR/TNMR of 0.779/0.863. We assume this to be the re-
sult of users shaking the devices slightly harder and/or faster
as well as keeping the wrist more stiff — therefore causing
more similar acceleration time series on both devices.

Similar to using the dominant or non dominant hand, sit-
ting while shaking devices seems to cause slightly lower er-
ror rates compared to standing — with sitting (represented
by the brighter lines in the right graph) causing an EER
of 0.176 and a TMR/TNMR of 0.806/0.866 for 2s of shak-
ing compared to standing (represented by the darker lines)
causing an EER of 0.177 and a TMR/TNMR of 0.818/0.828.

5.4 Implementation

To measure the actual time required for unlocking the mo-
bile phone we implemented a ShakeUnlock prototype based
on our approach. This way the duration of establishing a
link between the wrist watch and mobile phone (using pre-
vious pairing) and transmission of an active segment can be
incorporated in our measurement. The ShakeUnlock proto-
type records active segments of 2s to determine if devices
were shaken together — but starts to establish the link right
after the start of an active segment is detected.

We tested our prototype using the Moto G and Simvalley
watch also used for recording the u’smile shake database.
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Figure 7: Devices being shaken for different durations with the non dominant hand (left, dark) and with the
dominant hand (left, bright) as well as when standing (right, bright) and sitting (right, dark).

Results show that the average time it takes to unlock the
mobile phone after users start to shake their wrist watch
is in the range of 2.5s, with the additional 0.5s over 2s of
shaking caused mainly by powering the link between de-
vices. These results indicate that unlocking a mobile phone
by shaking it together with a wrist watch is practically feasi-
ble, compared to the widely deployed unlocking mechanisms
PIN and graphic pattern (with average unlocking times of
1.5s and 3s) — while requiring less user attention.

6. CONCLUSION

In this paper, we propose to use the shaking interaction
that was previously proposed to pair mobile devices for un-
locking one of the devices. To transfer the authentication
state from one device (e.g. a wrist watch) to the other (e.g.
a mobile phone), we create a one-time event by shaking them
together. In comparison to previous research, we focused on
a new use case — unlocking a device already paired to another
trusted device — and determined the required data analysis
parameters for this setting. We specifically analyzed devices
being shaken apart from each other (being strapped to the
wrist and held in the hand) and utilize sensors embedded
in off-the-shelf devices. In terms of practical use, we do not
maintain an active link between devices in order to not drain
the battery.

For purpose of evaluation we recorded the u’smile Shake-
Unlock database, which contains 20 acceleration time series
sets of pairwise shaking a mobile phone and wrist watch
each, for 29 participants, in 4 different settings. Our evalua-
tion shows that transferring the authentication state from an
unlocked wrist watch, strapped to users wrists, to a locked
mobile phone, held in their hands by shaking them together
for only 2 seconds is possible with a true match rate of 0.795
and a true non match rate of 0.867. Applying our approach
to data of devices that were pressed against each other dur-
ing shaking resulted in considerable improvements — which
affirms previous intuition that the device proximity plays
a major role when shaking devices together. We explicitly

note that the increased false non match rate (in compari-
son to previous research with devices shaken in the same
hand) is still acceptable for our new use case of unlocking
devices because of a different threat model: we do not derive
long-lived cryptographic shared secret keys from the shaking
motion, but only create one-time unlocking events if — and
only if — both devices are shaken at the same time and with
sufficiently similar motion patterns. This use case avoids
brute force off-line attacks as discussed in our threat model.

Future work might evaluate in depth the impact of a)
users bending their wrists during shaking and b) users not
feeling comfortable with strapping their watch too tight to
their wrist, which will cause the watch to move and which we
both assume to have additional impact on error rates of our
approach. Combination of time and frequent domain fea-
tures might also be effective for our approach and therefore
be in focus of future research.
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