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ABSTRACT
Face detection (finding faces of different perspectives in im-
ages) is an important task as prerequisite to face recogni-
tion. This is especially difficult in the mobile domain, as
bad image quality and illumination conditions lead to over-
all reduced face detection rates. Background information
still present in segmented faces and unequally normalized
faces further decrease face recognition rates. We present a
novel approach to robust single upright face detection and
segmentation from different perspectives based on range in-
formation (pixel values corresponding to the camera-object
distance). We use range template matching for finding the
face’s coarse position and gradient vector flow (GVF) snakes
for precisely segmenting faces. We further evaluate our ap-
proach on range faces from the u’smile face database, then
perform face recognition using the segmented faces to eval-
uate and compare our approach with previous research. Re-
sults indicate that range template matching might be a good
approach to finding a single face; in our tests we achieved an
error free detection rate and average recognition rates above
98%/96% for color/range images.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Seg-
mentation; I.5.4 [Pattern Recognition]: Applications—
Computer Vision; G.1.2 [Numerical Analysis]: Approxi-
mation—Approximation of surfaces and contours
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Range images, mobile device, face detection, face segmenta-
tion, template matching, snakes
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1. INTRODUCTION
Face recognition (automatically identifying individuals by

their face) is an important task used in a wide variety of se-
curity related systems, such as building access, border con-
trols with biometric passports, in video surveillance, or for
authentication to computer systems. One of the most im-
portant prerequisites to face recognition is face detection
– which is finding and segmenting faces from arbitrary per-
spectives in a given image. Recently, face detection and
recognition have received more attention in the domain of
mobile devices as one form of authentication to unlock a
personal mobile device that does not depend on remember-
ing and entering a PIN/password. However, due to bad
image quality, changing illumination conditions and back-
ground information included in images, both tasks are gen-
erally more complicated in the mobile domain and lead to
worse results when compared with e. g. video surveillance
settings. Consequently, approaches to still obtain feasible
authentication results under these conditions have been de-
veloped, such as by combining face recognition with other
authentication approaches [16, 25].

When looking at the task of successfully performing face
recognition, face detection must provide good results as in-
put to the recognition in terms of a) a high rate of correct
detections and b) a good face normalization. When look-
ing at normalization, it is important that all detected faces
roughly include the same area of facial information (e. g.
from the left to the right ear and from the hair line to the
chin) – and that inside the area marking a face, the faces
should be positioned equally (such as centered at the nose).
When measuring the face detection rate itself, the perfor-
mance can be stated as amount of correct detections (true
positives) and the amount of wrong and missing detections
(false positives and false negatives). A low true positive rate
means that many faces are missed during detection – which
causes the face recognition to have less data available dur-
ing training and classification. A high false positive rate
means that many detections don’t actually contain faces
– which causes the face classifiers to learn from non-face
images. Both cases will decrease the recognition rate and
should therefore be avoided.

Unfortunately, the detection rate is not the only factor
influencing face recognition. Estimating the detection rate
for a specific face detection approach depends on making
a binary choice for each of the images if the face was de-
tected correctly or not. This includes a tolerance in terms



of normalization so that faces e. g. slightly shifted to one
side, scaled slightly differently or with a certain amount of
background information still present will also be counted as
correctly detected faces (see figure 1). If the grade of face
normalization provided by face detection and segmentation
is not sufficient, subsequently applied face classifiers will not
only learn the faces’ discriminating features, but also dis-
criminating features in normalization1. E. g. if the face of
subject A is shifted to one side of an image, a classifier will
also learn the shift besides learning the face properties. If a
face of subject B has the same shift, the classifier will more
likely classify this face as originated by subject A.The same
applies for background information present in face images
after face detection, e. g. with using a rectangular crop area
for face segmentation. Again, face classifiers will learn dis-
criminating features in background information additionally
to the faces’ discriminating features. Consequently, the de-
tection rate itself is a poor indicator for the impact of face
detection quality on the subsequent face recognition step,
and we therefore evaluate not only the detection rate but
also the overall recognition rate and compare it with previ-
ous research results.

Figure 1: Face images after face detection showing
background information and unequal normalization
in size and position [6].

As an additional issue, many face detection and recogni-
tion approaches are intentionally designed to work from the
frontal face perspective, with only a small set of algorithms
being able to also handle other perspectives (such as the
profile perspective). To address the mentioned problems of
requiring a high correct detection rate and good face nor-
malization, we propose a face detection and segmentation
approach based on range images. With range images, each
pixel represents the camera-object distance (range images
can be obtained e. g. by using stereo cameras and stereo vi-
sion algorithms, such as with [12]). Using the known face
area from range face segmentation, a grayscale version of the
same image can be segmented analogously afterwards. Our
approach is intended to be applicable to all perspectives,
including frontal and profile faces.

Therefore, this paper makes the following contributions:

• First, we introduce a novel approach to range based
face detection for different perspectives, as prerequisite
to face recognition on mobile devices. Our approach is
based on range face template matching, for which we
use templates of the average face’s range information
per perspective. We explain the template generation
and matching in detail with focusing on a high grade
of normalization (see section 2).

1When not learning from geometric but appearance-based
features.

• Second, we apply gradient vector flow (GVF) snakes
after template matching for precise face segmentation
along the faces’ contours (see section 2.3).

• Finally, we evaluate our face detection and segmen-
tation approach in different stages on range images of
the u’smile face database. We a) compare our face seg-
mentation results with previous research and state of
the art face detection approaches in terms of detection
rate and normalization, and b) apply face recognition
on segmented faces in order to measure the actual gain
to mobile face recognition (see section 3).

2. METHOD
Our range face detection and segmentation approach (see

figure 2) performs an initial background removal on input
range images. Then, it matches average head range tem-
plates of different perspectives to given range images in or-
der to find the head’s most probable position. As soon as
we know the head’s position, we can already perform an ap-
proximate segmentation of the face, using the average head’s
range template contour. As this contour has no possibility to
fit the individual face’s actual contour, we additionally uti-
lize GVF snakes to precisely segment the face in grayscale
and range input images. Using segmented faces as input
to face recognition, we measure the quality of our detection
and segmentation using classifiers for each perspective and
test subject.

2.1 Range Face Template Assembly
This section describes the semi-automatic creation of av-

erage head and torso range templates from range images2.
The template creation toolchain is structured as follows: we
first perform a coarse background segmentation to discard
information not related to the human face and body. We
then normalize the heads’ positions so that they are roughly
equal in all images. Finally, we create a) average range im-
ages, which represent the average range to the subject, and
b) “hit count” templates, which – for each pixel – represent
the amount of images in which subjects had range informa-
tion present.

The template creation is not intended to be performed on
the mobile device and has to be done only once for each
perspective from which face detection should be performed
afterwards.

2.1.1 Coarse Background Segmentation
In order to only use range information related to the hu-

man head and torso for template creation, we discard all
range values bigger than a threshold α. This requires all
range images used during template creation to be recorded
from roughly the same camera-subject distance, as it is the
case with the u’smile face database. Further, α is perspective-
dependent: therefore we use histograms of the range value
distribution of all images for each perspective to determine
the correlating α. The smallest range values (first peak)
represent the head and torso, the farthest range values rep-
resent background information. Therefore we define α after
the first peak (see figure 3).

2Assuming heads have been normalized to the same size
and rotation, as if the images would have been recorded
upright and from the same camera-to-subject distance for
all participants.
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Figure 2: Range face segmentation test setup with optional background removal and GVF snake face contour
segmentation.

Figure 3: Range value distribution of images in the
0◦ perspective with α marked bolt.

2.1.2 Head Position Normalization
After coarse background segmentation, we roughly cen-

ter the heads’ positions in the range images. Therefore we
search a head’s four boundaries and align them along the
image’s center.

To find the top boundary, we search from the image’s top
for the first line containing at least Nt range values. Nt can
be adjusted to avoid outliers – e. g. for our implementation
we used Nt = 40. As this line lies beyond the head’s top,
we go back up 2% of the image height to be sure that all
range information is included. The resulting y-coordinate
is the head’s top boundary. We assume the heads’ bottom
boundary lies h pixel beyond the found top boundary, with
h being hand-picked from the range [100, 135] depending on
the perspective. For frontal perspectives the chin is nearly
in the same height as the neck. Therefore a smaller h can be
used, as the smallest horizontal area filled with range infor-
mation is higher than in the portrait perspectives, where the
chin is beside the neck and cannot be ignored. To find the
right and left boundaries, we now crop the image to the top
and bottom boundaries in order to discard range informa-
tion correlated to the torso. Then we use a similar approach
as for finding the top boundary: from the image borders
on each side we search for the first column containing at
least Ns range values, with Ns = 70 in our implementation.
Again, we then go back 2% of the image’s width towards
the image’s borders for including all relevant range informa-
tion3. As we now know a head’s four boundaries (with the
boundaries’ central point being the head’s center point), we
can a) shift the center points of all heads of a perspective to
the same position and b) cutout the heads (see figure 4).

3As our test data contains an artifact in portrait perspec-
tives, we have to perform an additional artifact removal in
our evaluation implementation at this point (see section 3.1)

(a) Central position (b) Boundary area

Figure 4: Head position normalization with a)
marked central point and b) a head cut out by it’s
found boundaries.

2.1.3 Template Assembly
Using the head position normalized range images, we can

now create four range templates per perspective: a “hit
count” torso and face template and an average range torso
and face template. The hit count templates represent the
amount of images per perspective with range information
present at a certain pixel. E. g. as we have at most 620 im-
ages per perspective in our test data set, the value range of
a hit count template is [0, 620] in our implementation. The
average range templates represent the average range infor-
mation of all images per perspective. We do not consider
zero values (=background) for the template creation, there-
fore the range value at a certain pixel is the average of all
images only having a foreground value present. The face
templates are composed out of the range images cropped to
the face areas determined using the head position normaliza-
tion. The torso images are composed out of the normalized,
not cropped range images. We note that template matching
conceptually can be performed based on average range tem-
plates as well as hit count templates. In our experiments we
achieved worse results throughout using the average range
templates and therefore describe our approach using the hit
count templates only.

We crop the torso templates to a 300×300 px area around
the users head. These cropped torso templates are used
during the first stage of template matching which determines
the coarse position of the user’s head in a range image. The
smaller face templates are used during the second stage of
template matching, which aims to improve the accuracy of
the face position found during the first stage. Therefore, the
second stage template matching is performed in a small area
around the initially found face position.



Figure 5 shows two examples of head position normalized
hit count and average range images. The larger marked re-
gion is the 300×300 torso template used for coarse matching,
the smaller the face template for fine grained matching.

(a) Hit count (b) Average range

Figure 5: Average torso and face images from frontal
and profile perspective. Torso and face templates
are marked white.

2.2 Face Template Matching
We perform face template matching based on sliding win-

dow principle and template scaling (see figure 6), so that dif-
ferent face sizes and positions can be matched. Our match-
ing approach further consists of two (basically identical)
steps: coarse and fine matching, using the created torso
and face range templates. During coarse matching, a rough
estimate of the heads’ position is detected using different
scalings and positions of the torso templates. Based on the
coarse position we then perform fine matching in the sur-
rounding area using the face templates (using finer sliding
window steps with different template scaling and positions
again) in order to improve the accuracy of the found face’s
position.

Comparing how well a template matches a certain area
in a range image is done using a template matching metric.
Normalizing the template and range data depends on the
grade of preprocessing applied to the range input data in or-
der for the metric to work correctly. The metric and normal-
ization for range data without background (see section 2.2.1)
is applied in case the background has been removed from
input range images (as it has been applied to range images
used during template creation). In case no background re-
moval has been applied the metric and normalization for
range data without background (see section 2.2.2) are ap-
plied instead. We implement and evaluate our approach
with range data with both background still present and re-
moved (see section 3).

During our experiments we discovered that searching for
correlations between hit count templates and range images
is more robust than comparing range values of range images

Figure 6: Concept of template matching using a slid-
ing window: similarity between the template and
the image is calculated as the template’s window
slides through the image.

and average range templates. Therefore we only make use
of hit count templates subsequent to this point – although
average range images might be used as well with different
metrics.

2.2.1 Template Matching Metric: without Background
This range data and template normalization requires a

background-free range image — similar to the images used
during template creation. Initially, we convert the hit count

template T to the range [−1, 1] using T = T−min(T )
max(T )−min(T )

.

For matching T with an actual range image I we have to
normalize I to the range [−1, 1] too, by setting all pixels
containing no range information (background) to −1, and
all pixels containing range information to 1.

As a) our metric essentially is a multiplication of the nor-
malized hit count template T with the normalized range im-
age I and b) T by now most likely contains more background
(−1) than foreground (1) information, the following effect
could be observed: as T contains a bigger background than
foreground region it will give a bigger weight to matching the
background than to matching the foreground. Therefore not
matching the background would lead to a stronger decreased
metric than not matching the foreground. This could lead
to false detections with large background regions being al-
most perfectly fitted, but the smaller foreground region be-
ing missed completely. Consequently we have to correct T
before matching, which we did by scaling all values > 0 so
that T sums to 0. As side effect the range of T is no longer
[−1, 1], but [−1, N ] with N > 1.0. e. g. for the perspective
of 0◦ we obtained a template range of [−1, 3.0036].

After bringing the range image I and hit count template
T to the required range, the metric M can be computed
(see equation 1). The current template area A(T ) is used
to normalize M independently of the size of the currently
matched area. Regions outside the current size of template
T are not taken into account for M . Higher values indicate
better matches.

M =
1

A(T )

∑
x,y

Tx,y · Ix,y (1)



Figure 7 shows the best match found by the template
matching metric in a range image without background in-
formation. The regions marked white are the best matched
position with the torso template (big) and face template
(small).

(a) Coarse matching (b) Fine matching

Figure 7: Best matched face area for coarse and fine
matching on range images for a frontal and profile
perspective with background information removed

2.2.2 Template Matching Metric: with Background
In case background removal is not applicable for range

images, we use this range data and template normalization
which is slightly adapted to work with background informa-
tion still present in images. Before actually matching tem-
plate and range image, errors in the range image (regions
without information) should be corrected. This is particu-
larly important when matching range images still including
background information, as the subsequent application of
GVF snakes will likely deliver erroneous results caused by
these errors. Especially errors directly at the borders of the
face need to be corrected. For the test data used in our eval-
uation, the real range information of these unknown regions
next to the face would be “background”. Therefore we apply
a hole filling algorithm which fills up these unknown regions
with background information.

As for matching range images without background, we
first normalize the hit count template T to the range [−1, 1],
then scale values > 0 so that T sums to 0. As the range
image I contains background information, we cannot apply
a simple binarization as for matching range not containing
background information. Instead we also normalize I to
the range [−1, 1]. This requires a strong rise in range from
the head (foreground) towards the background, so that the
foreground will more likely contain positive values, and the
background more likely negative values. We then compute
the metric using equation 1.

Figure 8 shows the best match found by the template
matching metric on a range image including background in-
formation. In comparison to figure 7 the results are approx-

imately the same. In case background range values are over-
all increasing/decreasing towards a certain direction, small
shifts along this direction are to be expected.

(a) Coarse matching (b) Fine matching

Figure 8: Best matched face area for coarse and fine
matching on range images for a frontal and profile
perspective still containing background information

2.2.3 Sliding Window and Template Scaling
We perform face template matching in two stages: coarse

matching using the torso template and fine matching using
the smaller face template — both from the corresponding
perspective. In each stage we perform template matching in
a sliding window principle with scaling templates to different
sizes.

In the first stage the sliding window starts with step sizes
Sx and Sy in x- and y-direction, with Sx = 40px and Sy =
40px in our implementation for performance reasons. For
each step, we compute the metric using the current posi-
tion of the sliding window and the template as described in
section 2.2.1 and 2.2.2. After the complete sliding window
iteration the result is a list of all metrics with corresponding
size and position of the template in the range image. The
highest metrics’ areas give a first indication where the final
best match is located. To find this best match the next step
is to call the sliding window again with smaller step sizes
and a smaller search area for a more precise search. We use
the best four metrics’ positions and combine them to the
new search area. Additionally, we extend this area with the
padding P to ensure that a potential best match at the bor-
ders will not be ignored, with a P = 4px in our implemen-
tation. For the new and smaller step sizes we use one-tenth
of the new search area’s length in x- and y-direction.

We call the sliding window algorithm recursively with
more precise search areas and smaller step sizes after each
iteration until the step size is 1px or the search area does not
change anymore. Reaching this point we are at the smallest
possible search area and have found the best match with
the coarse template. Because of different distances between
person and camera and therefore different torso and face



sizes, a scaled template could find better matches. Our slid-
ing window technique always uses the same template size
for one complete best match search, and we therefore apply
a template scaling on top of the sliding window. For each
of the different scaled versions of the template, we compute
the best match with the sliding window and compare these
results in order to find the optimal scaling factor.

For the start of the template scaling algorithm we de-
fine three parameters for the scaling range: Sstart, Send

and Sstep. In our implementation we used Sstart = 0.8%,
Send = 1.2% and Sstep = 0.1%. For each scaling step the
sliding window algorithm finds the position with the best
match. Out of these metrics we use the scaling factor S
obtained from the best metric and use it for a more precise
scaling factor search. We perform three template scaling it-
erations to optimize the scaling factor. For each iteration
the new search parameters get calculated using equation 2.

Snew step =
Sstep

10
Snew start = S − 2 · Snew step

Snew end = S + 2 · Snew step (2)

The result of the template matching is the best match of
differently scaled torso templates in the range image. We
obtain the position of the best match and the scaling factor
for the template. After having this information the next
step is to search the head in the area of the torso. In order
to archive the head position the last step is to repeat the
whole process of the sliding window with the head template
and the torso area. In our implementation we start again
with step sizes of 40px and use the resulting scaling factor S
from the torso template scaling to scale the head template.

The result of this sliding window is the best match posi-
tion of the head in the torso area. We cut this head area for
the face segmentation.

2.3 Face Segmentation Approaches
After performing range template based face detection we

know the position of the face in the image. As next step
we segment this face (discard non-face related information).
This can either be done by using the range template’s con-
tours, or by applying GVF snakes to precisely segment along
the individual face contour.

2.3.1 Template Segmentation
A computationally fast and easy to implement approach

which delivers feasible results is to segment the face along
the hit count template’s contour. As the hit count template
is very likely larger than the detected face (it contains in-
formation in all pixels at which at least one range image
contained information during template creation), we only
consider pixels for which at least N% of range images con-
tained information. This leads to the hit count template’s
contour getting smaller – and fitting the average face better.
Again, N depends on the perspective: for the perspective of
0◦ we use only hits with at least N = 50% appearance in
all images of this perspective. For the perspective of ±22.5◦

perspectives we use N = 60% and for all other perspectives
we use N = 70%. When cutting out along the contour of
pixels fulfilling the N% criteria of the hit count template
(without using snakes to exactly match the contour), we
still can segment faces quite exact (see figure 9).

Figure 9: Faces cut out by the hit count template
contour

These faces can be used directly as input to face classifiers.
Although this approach is faster – as no further segmenta-
tion computation is necessary – it has the major drawback
of not fitting the face’s actual contour, as it only takes into
account the “average face contour” from the corresponding
perspective. Therefore, we additionally use GVF snakes to
fit the cut out area precisely to the individual’s face contour
in the next section.

2.3.2 GVF Snakes Segmentation
We apply the GVF snake calculation by Xu et al. [28] to

precisely cut out the face on the individual’s face contour.
We position the initial GVF snake on the contour of the
preprocessed hit count template from section 2.3.1 – exactly
on the contour, on which a cut out using the template only
would take place. From there, the GVF snake should evolve
towards the face’s actual contour. For this purpose we first
create an edge map of the area around the face in the range
image, which was found using template matching [4]. Based
on the edge map we calculate the GVF field, acting as exter-
nal forces which pull the snake towards the edge. As GVF
parameters we use a regularization coefficient µ = 0.2 and
80 iteration steps. We further specify the following param-
eters for the GVF snake’s internal calculation: α = 0.05,
β = 0, γ = 1 and κ = 0.6. This results in a trade-off be-
tween a quite precise edge matching and fast calculability
(see figure 10).

After performing additional GVF snake segmentation, we
naturally obtain more precisely segmented faces, which con-
tain less background information than with cutting out faces
at the hit count template’s contour (see figure 11). Again,
these faces are used as input to face classifiers in the next
section.

To wrap up: in order to perform range template matching
we at first assemble templates of the face and torso area from
different perspectives. We therefore first remove background
in range images, second perform head position normaliza-
tion and finally create hit count templates from the range
images. Before performing template matching, we normalize
input images not containing background information slightly
differently than range input images still containing back-
ground images in order to handle both variants. We then
perform range face detection based on two staged sliding
window template matching and template scaling, using the
torso template in the first, the face template in the second
stage. In each template matching stage, we recursively re-
duce the granularity of our search by decreasing the sliding
window step width in areas of interest. We do this until
we have found the most likely position for the torso in the
first stage and the face in the second stage, inside the region
marked by the torso.



(a) Edge map (b) Initial active contour

(c) Snake deformation (d) Final GVF snake

Figure 10: Step-by-step results from edge map up
to the GVF snake.

Figure 11: Faces segmented by GVF snakes after
performing range template matching.

3. IMPLEMENTATION / TEST RESULTS
For evaluation, we implemented our face segmentation ap-

proach in Matlab. As test data we use the Kinect color and
range images from 2013 of the u’smile face database [6].
Using our implementation, we perform face detection and
segmentation in 4 different setups:

1. With initial image background removal and without
performing GVF snake segmentation.

2. With initial image background removal and with per-
forming GVF snake segmentation.

3. Without initial image background removal and with-
out performing GVF snake segmentation.

4. Without initial image background removal and with
performing GVF snake segmentation.

Not performing initial image background removal repre-
sents cases in which background removal is not possible for
various reasons. Based on the segmented faces we then per-
form face recognition on range and grayscale images sepa-
rately and compare our results to previous research [7].

3.1 Test Data Artifact Removal
For the image acquisition of the u’smile face database

recorded in 2013, a stick behind the head was used to adjust
the distance between Kinect sensor and each person. For the

head position normalization we need to consider this stick at
the back of the head. In the portrait perspectives the side’s
boundary without the stick can be found in the same way
as for the frontal perspectives. Using this boundary plus a
width of 140px the main stick can be removed from the im-
age and only the head plus a small additional stick remains.
After that we remove the remaining stick by searching the
first appearance of 70 range values from the side with the
stick, because the remaining stick’s height is smaller than
this threshold and the back of the head’s boundary is found.

3.2 Face Classifiers
Based on segmented faces we perform face recognition on

grayscale and range faces separately. Therefore, we treat our
face recognition as a binary classification problem. When
creating the positive and negative data classes, all images of
the particular subject form the positive class, and all images
of the other subjects form the negative class. As we have 30
people in our test data, we a) compute 30 such binary classi-
fication problems and b) have a negative class being 29 times
the size of the positive class. For this reason, the recognition
rates for the negative class are expected to be better than
those of the positive class – we therefore only state the true
positive recognition rates in graphs. We use 60% of the data
of each class for training and cross validation. The remain-
ing 40% test data are used exclusively for measuring the final
recognition rates. For performing face recognition based on
our range template based face segmentation results, we use
a Support Vector Machine (SVM) from LibSVM [5] and per-
form a parameter grid search as suggested by Hsu et al. [9].
It turns out that the best classifier for our data is a linear
SVM with cost of 10.

3.3 Results
In comparison to the face detection rate of 77.63% from

previous research on the u’smile face database [6], which is
based on the OpenCV implementation of Viola and Jones [13,
27], we achieve a 100% correct detection rate with all setups
of our range template based approach, as we correctly detect
all faces.
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Figure 12: Boxplot showing average true positive
face recognition rates using segmented faces in a)
color and b) range with setup 1-4.

The face recognition results (see figure 12 and 13) clearly
show that precise face segmentation using GVF snakes does
not improve results (respectively does not improve them sig-
nificantly). When using initial range image background re-



moval, the average true positive/true negative face recogni-
tion rates without GVF snakes are 99.78%/100% for color
and 98.21%/99.99% for range, compared to 99.33%/100%
for color and 98.7%/99.99% for range with GVF snakes.
When looking at face segmentation without performing ini-
tial background removal, the average true positive/true neg-
ative face recognition rates without using GVF snakes are
99.06%/100% for color and 97.4 %/99.98% for range, com-
pared to 98.61%/100% for color and 96.82%/99.97% for range
when using GVF snakes. Also, using range images is on av-
erage less reliable than using grayscale images.

We believe the reason for GVF snakes not improving re-
sults further is that a) segmentation based on cutting out
the head along the templates’ borders already showed good
results and b) the range images contain undefined areas at
or next to the face’s real contour from the start. These range
errors lead to an edge map showing a contour not completely
matching the face’s real contour (such as the lower left area
in figure 10). Therefore, the GVF snake does not completely
match the actual face’s contour, but also includes areas of
range error – which vary across the subjects and are learned
by face classifiers along with the real face features. We be-
lieve that GVF snakes face contour segmentation will result
in improved face recognition rates (over a cutout along the
template contour) when using more accurate range images
in the first place than the Kinect can currently deliver.

Altogether, our current face recognition results are still
significantly better than from previous research based on
grayscale images only and Viola and Jones face detection
with a rectangular crop area [6]. When passing all de-
tected faces (including false positive detections) to the classi-
fiers, the average true positive/negative recognition rate was
86.22%/99.57%. Even when only passing correct detections
to the classifiers, the average true positive/true negative
recognition rate using grayscale images was 97.81%/99.98%
– which still is worse than with our current approach. This
likely correlates with background information still present
in face images and worse normalization in terms of face size
and position for the previous approach. We further achieve
improved results compared to previous research also based
on range template matching [7], where the average true pos-
itive/true negative recognition rate was 96.85%/99.97% for
color and 93.89%/99.95% for range images – with the most
important improvement being the precise data normaliza-
tion during template creation and matching.

4. RELATED WORK

4.1 Building Blocks
We make use of GVF snakes for precise face segmenta-

tion along a face’s range contour. Snakes are introduced by
Kass et al. [11] as active contour models, that create a line
towards features – such as edges – based on internal and
external constraint forces. Xu et al. [28, 29] call these forces
gradient vector flow (GVF) and compute them as a diffusion
of the gradient vectors of an edge map. We create such edge
maps from the resulting cutout face range images of the face
template matching.

In order to perform face recognition for evaluating our ap-
proach, we rely on Support Vector Machines as mentioned
e. g. by Phillips [19]. In our test setup we use the imple-
mentation of LibSVM [5] with a grid search for parameter
tuning as suggested by Hsu et al. [9].

4.2 Related Work
There exist many approaches to face detection, and for a

more comprehensive review we refer to [8, 10, 22, 30]. Im-
portant research in face detection has been conducted by
Turk and Pentland with using Eigenfaces for detection as
well as recognition [26]. Rowley et al. use neural networks
for detecting the presence of faces [20]. Sung and Poggio
use a view-based model cluster approach [24]. Bayesian fea-
tures are used by Liu to detect faces [14]. Schneidermann
and Kanade use wavelet transformation for object detec-
tion, including faces [23]. One of the de facto standard
approaches to face detection was publicized by Viola and
Jones in their object detection framework with Haar-like
features [27], with the extension by Lienhart [13]. For their
approach there is a measurably decreased detection rate for
the profile perspectives, as discussed in [21, 22].

There are a couple of approaches in the 3D face segmen-
tation field. Blanz et al. [1, 2] segment faces with fitting a
statistical, morphable model of 3D faces to images in frontal
and profile perspectives. In comparison to our approach,
they created the model from a set of textured 3D laser
scans of the head. Pamplona Segundo et al. [18] propose
automatic face segmentation in range images based on edge
detection, region clustering using K-means and shape anal-
ysis to segment faces. As with many others, their approach
is only designed to work from the frontal perspective. Other
approaches search for certain features – such as the nose
position – to perform segmentation. E. g. Mian et al. [17]
perform a nose tip detection, then segment the face using
a sphere centered at the nose tip position. Further ap-
proaches use a histogram of the range coordinates [3] or
segment the head by using a statistical modeling of head
and torso points [15].

5. CONCLUSIONS
We are working on a range based face detection and seg-

mentation approach which is intended to be used as prereq-
uisite to face recognition – and can be applied from different
perspectives around the head. Our approach focuses on re-
liability, a high grade of face normalization and precise face
contour segmentation. First, we create average range face
templates per perspective, which we match with range im-
ages to detect the person’s head. Then we apply GVF snakes
for precise face segmentation along the face’s contours. Fi-
nally, we perform face recognition to estimate the real-world
applicability of our approach.

Our results indicate that face detection and segmentation
based on range information might be a very effective ap-
proach in general for finding single faces in a mobile device
unlock scenario. Using range template matching, we achieve
an error free face detection on Kinect color and range images
of the u’smile face database. Faces segmented by our ap-
proach are normalized in position and size and contain very
little background information. As both of these are very im-
portant to face recognition, we naturally achieve better face
recognition results compared to previous research using the
same data. Using a linear Support Vector Machine as face
classifier we achieve average true positive recognition rates
above 98% on grayscale and 96% on range images from our
test set.

In order to apply range template based face detection and
segmentation in the mobile domain, mobile devices must



be capable of taking such range images, e. g. with stereo
cameras. Some current smartphones already contain such
cameras mounted on the back side – for more convenient
usage they would be required to contain stereo cameras on
the front side too. When using stereo cameras, a further
prerequisite to successfully performing a range based face
unlock in the mobile domain are computationally fast and
robust stereo-to-range algorithms that generate range im-
ages with only a small amount of erroneous areas. As many
existing stereo vision algorithms are either computationally
too intensive or deliver inadequate results when applied on
data recorded with typical mobile device quality, there is a
strong need for improved stereo vision algorithms applicable
in the mobile domain as necessary groundwork to successful
mobile device stereo vision face unlock.
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Figure 13: Boxplot showing true positive face recog-
nition results separated for perspectives, using seg-
mented faces in color (left) and range (right).
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