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Abstract

Personal mobile devices hold a vast amount of private and sensitive data and
can e. g. be used to access services with associated cost. For security reasons,
most mobile platforms therefore implement automatic device locking after a
period of inactivity. Unlocking them using approaches like PIN, password or
an unlock pattern is both problematic in terms of usability and potentially
insecure, as it is prone to the shoulder surfing attack: an attacker watching
the display during user authentication. Hence, face unlock – using biometric
face information for authentication – was developed as a more secure as well
as more usable personal device unlock. Unfortunately, when using frontal
face information only, authentication can still be circumvented by a photo
attack: presenting a photo/video of the authorized person to the camera. In
this work we present a variant of face unlock which is harder to circumvent
than with using frontal face information only by using more facial informa-
tion, available during a 180◇ pan shot around the user’s head. We develop
and evaluate our mobile device pan shot face unlock in four different stages
in order to identify conceptual weaknesses and do improvements within the
next stage. In the first stage we present a proof-of-concept prototype based
on Android, which uses different Viola and Jones Haar-cascades for face de-
tection and Eigenfaces for face recognition. We identify Eigenfaces as being
insufficient for usage in a mobile device unlocking scenario. Therefore, we
utilize neural networks and support vector machines for face recognition in
the next stage, with which we identify using Viola and Jones based face
detection as being insufficient for usage in a mobile device pan shot unlock-
ing scenario based on multiple perspectives. Hence, we develop a novel face
detection and segmentation approach based on stereo vision and range tem-
plate matching in the next stage, which we find to deliver promising results
and consequently focus on improving details of the range template genera-
tion and matching within the fourth and last stage. Parallel to developing
and evaluating our approach we build up the u’smile face database contain-
ing grayscale and stereo vision pan shot test data. Concluding, our results
indicate that a mobile device pan shot face unlock is a viable approach to
unlocking mobile devices and that using range information might in general
be an effective approach for incorporated face detection and segmentation.

viii



Chapter 1

Introduction

1.1 Why Privacy and Authentication Matter on
Personal Mobile Devices

Nowadays many people carry a mobile device – such as a smart phone –
which has access to a large amount of data. In general, a notable amount
of this data is considered to be private and deserves protection, such as a)
information stored in messages such as mail, SMS, MMS or from instant
messaging services, documents, pictures, videos and music stored on the
device and cached data such as browser history, b) context related data, such
as the current position (e.g. from GPS receiver or assisted, as with Wifi or
mobile cell ID fingerprinting) and data from sensors included in the mobile
device, such as acceleration sensors or gyroscope, c) information related to
accessing a service or network, such as login data to private or company
networks using e.g. VPN or Wifi, login data to mail services, websites and
portals and even payment related information, such as access to banking,
transactions and electronic forms of money (e. g. Falaki et. al. [60], Fried [74],
Furnell et. al. [76]).

In case of this data falling into the hands of an unknown observer, a num-
ber of threats are possible: the observer could gain insight to private and
classified information or could derive such information. They could further
make use of it, e. g. of information related to payment services to conduct
malicious transaction, or they could sell it to third parties. Moreover, the
observer could assess behavioral patterns and predict future behavior, e. g.
by performing location tracking and predicting future locations. Addition-
ally, the observer could use the access to services to spread information in
the device owner’s name, or in order to perform account hijacking (taking
over an account so that the legitimate user has no further access to it).
Finally, the observer could use access to private and company networks to
gain access to further data and devices.

1



1. Introduction 2

In order to protect access to this data stored on a personal mobile device,
access to the device itself has to be protected. In general there are two ways
of accessing a mobile device: remotely and locally. Remote access means
access without physical contact to the device and can be gained over a
network e. g. via software accessing the network legitimately, or using an
exploit for software installed on the device. Local access means access with
physical contact to the device, such as the user interacting with the device
directly. On the one hand, remote access can be limited or even refused, as
it might not be necessary for the legitimate user locally interacting with the
device. On the other hand, local access is necessary for the legitimate user
to interact with this device. For this reason, and for mobile devices being
lost or stolen much easier than classical desktop computers, protecting local
access to the device is a very important task. As an example, even a short
time of physical access to a personal mobile device might enable an attacker
to install malicious software – which could grant the attacker remote access
in the future, without the legitimate user even noticing the device as lost,
stolen or contaminated. Therefore, this work is targeting the protection of
local access to a personal mobile device against unauthorized users.

1.2 Security’s Usability

End user security measures in combination with frequent device usage suf-
fer a major drawback: they don’t get applied voluntarily if their usability is
too low. The problem especially with frequent device usage and local access
protection is simple: from a user point of view, the positive effects of secu-
rity are outperformed by the negative ones. For example, users facing less
risk of somebody else accessing their private data will still not apply the
therefore necessary security in case they are required to remember a long
and complex password – and a few extra seconds during login when enter-
ing this password, each time they want to interact with the device. There
are a few well known examples: studies show that if users are required to
apply a password, but are free at choosing it, they most frequently choose
short or rather incomplex and easy memorizable passwords [20, 90, 147, 200,
207]. This enables possible attackers to eventually derive the password from
previously aggregated information about the user, or simply brute force it.
In case of users applying a complex password, there commonly is the phe-
nomenon of “cognitive load”: as users already have to remember a single,
long and complex password, they are likely going to apply this password
wherever possible. Consequently, attackers are able to access de facto all of
the user’s services and devices once this password has been leaked for an ar-
bitrary reason. These effects can be observed e. g. with company passwords,
which widely only get changed frequently and with the required strength (in
terms of length and complexity), if a corresponding policy is applied.
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All these mechanisms apply to the mobile domain as well – with the ex-
tension that users don’t actively use their devices contentiously, but stop and
continue the interaction frequently. When applying security, this practically
leads to a frequent locking and unlocking of the device – where of course
security’s bad usability preponderates. Consequently, security is not applied
very widely on mobile devices, as stated e. g. in [14, 45, 48, 136, 201]. For
this reason it is important that new ways of authenticating legitimate users
with their personal mobile devices are developed, which provide convenient
security not making the user feel uncomfortable at the same time.

1.3 Objective and Thesis Structure

We propose a pan shot face unlock for mobile devices, which a) uses more
information than frontal face information only based on a pan shot of the
device around the user’s head and b) intends to be more secure and usable
than current mobile device unlocking approaches. Our approach requires a
mobile device with a front side camera and integrated gyroscope sensor, as
it conceptually uses data recorded by cameras and sensors during a pan
shot. In terms of cameras, a pan shot face unlock can make use of mono
and/or stereo cameras. Using stereo cameras has the advantage of having
range visual data available along with colored visual data. The aim of our
approach is to a) increase security over current mobile device authentica-
tion approaches and b) still retain a high usability by a fast authentication
and device unlock. Compared to other face authentication approaches, our
approach requires more information than available in a photo or video of a
face from a single perspective. Attackers would be required to construct a 3D
model or obtain a closely synchronized video stream of the legitimate user
in order to successfully conduct a photo attack (see section 2.3.4). As such
data is harder to obtain than images showing a user’s face from single per-
spective (which often can be obtained from social networks), our approach
is conceptually harder to attack by a photo attack.

We review the currently most widely used classical and most important
biometric authentication approaches for mobile devices and their concep-
tual problems in chapter 2. In chapter 3, we provide an overview of related
work with a) research on mobile authentication systems, focused on face
authentication, b) approaches to face detection and face segmentation and
c) approaches to face recognition. We explain building blocks required for
our method in chapter 4. In chapter 5 we describe our approach in detail
with data aggregation, stereo to range conversion, performing face detection
and face segmentation, performing face recognition and combining classifiers
recognition results. We present the u’smile face database and its predecessor
as source of test data to our approach in chapter 6. In chapter 7 we present
the implementation and evaluation results of our approach in four different
stages. Finally, we conclude and provide an outlook in chapter 8.



Chapter 2

User Authentication on
Mobile Devices

Three basic factors are involved in user authentication (ensuring/confirm-
ing the identity of a person that wants to act as user of a certain system):
knowledge, possession and inherence. When using knowledge based authen-
tication, users authenticate by providing knowledge about something secret,
such as entering a password. For possession based authentication, users pro-
vides something only they have (often called a “token”), such as when using
a specific key or an access card. When using inherence based authentication,
users authenticate by providing information about something they are, such
as biometric information (e. g. fingerprint, iris grain, DNA), or with implic-
itly derived factors, such as certain behavioral pattern (e. g. within gait or
keyboard usage) which do not involve secret knowledge.

When focusing on knowledge as the primary factor in current mobile de-
vice authentication approaches (as all three, currently widely used unlocking
mechanisms – PIN, password an unlock pattern – are based on knowledge),
there is the problem of “cognitive load”. Conceptually, users should choose
different shared secrets for authentication on all devices they use – so that
leaking the secret for authenticating with one device does not necessarily
break authentication for all the other devices too. Therefore, the more de-
vices users owns, the more shared secrets they have to memorize and re-
member. This phenomenon is often referred to as increasing cognitive load.
The bigger the cognitive load of an approach is, the less is its usability –
which is a conceptual problem of knowledge based authentication when used
on many devices. Further, the more shared secrets users have to memorize,
the less likely they will choose long, complex and hard to remember secrets.
Consequently, many users either choose short and easy memorizable secrets,
or often reuse a single, more complex secret. An (in most cases) accelerated
authentication process makes short secrets even more attractive. All of the
mentioned cases make it easier for an attacker to possibly derive the one
shared secret in use, or reuse a secret leaked once for other services.

4



2. User Authentication on Mobile Devices 5

2.1 Classical Authentication on Mobile Devices

When only looking at current smartphones with activated device lock, there
exists a group of three most widely applied locking mechanisms: PIN, pass-
word and unlock pattern. All of them are knowledge based, so that the user
authenticates by providing information about the shared secret.

2.1.1 PIN

With a PIN based mobile device authentication the user enters a – typically
4 digit – number in order to unlock the device before usage (see figure 2.1).
With using a 4 digit PIN, the key space size is 10000, resulting in an en-
tropy of ~13.3bit. Therefore this approach could be brute forced, which can
practically be rendered ineffective e. g. by an increased delay between tries.
In terms of cognitive load and delay when unlocking the phone, PIN based
device unlock requires the user to remember the PIN and from anecdotal ex-
perience usually takes around 2 seconds to unlock the device – which makes
it significantly faster over a password based unlocking mechanism.

(a) Unlock PIN (b) Unlock password

Figure 2.1: Mobile device lock screen awaiting a) a PIN entry and b) a
password entry for unlocking the device.
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2.1.2 Password

Password based device unlock uses essentially the same approach as PIN
based device unlock, with a password instead of a PIN (see figure 2.1).
Before accessing the device the user enters a password, which may be of an
arbitrary length and consist of letters, numbers and symbols. Assuming 80
possibilities per character1, for a 6 character password the key space size is
2.62 · 108, resulting in an entropy of ~37.93bit; for an 8 character password
the key space size is 1.68 · 1015 with an entropy of ~50.56bit. Compared
to PIN based unlocking, password based unlocking takes longer for several
reasons: first, when entering a PIN only buttons for the numbers 0-9 are
required, therefore keyboard buttons are usually bigger and easier to hit.
Second, the majority of current smartphone keyboards is separated into
several parts which each showing a group of characters belonging together,
such as letters or symbols. In order to fully exhaust the entropy of a password
by using letters, numbers and symbols in a mixed way, the user is required
to switch in between the different parts of the keyboard. This a) makes
entering a password slower than entering a PIN and b) practically prevents
the majority of users to fully exhaust the entropy of password based device
unlock.

2.1.3 Unlock Pattern

With a pattern based unlock approach users connect an arbitrary, previ-
ously defined amount of position-fixed dots on the screen of their mobile
device in an arbitrary, previously defined order. Only if all defined dots have
been connected in the defined order, the mobile device unlocks for usage. A
pattern composed out of 9 dots in square formation is used most widely –
but there exist other patterns too, which are composed out of more dots or
have a different geometrical formation (see figure 2.2).

Assuming a pattern composed out of � = 9 dots and assuming dots
can be connected in arbitrary order and length � within minimal length
�min = 1 and maximal length �max = � , the key space size is � = 986409
(see equation 2.1), which results in an entropy of ~19.91bit2. Compared to
PIN and password based unlocking approaches, using a pattern is about as
fast as using a PIN – with the user having to remember the combination of
dots instead of a PIN.

� =
lmax︁

l=lmin

� !

(� − �)!
(2.1)

1For Android the actual amount of possibilities per character varies among different
builds and versions and usually is even higher than 80 characters.

2With Android only unlocking patterns are allowed which a) consist of 4 or more dots
and b) do not create a connection between dots over other, yet unconnected dots.
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(a) 9 dots (b) 16 dots (c) 25 dots

Figure 2.2: Mobile device unlock pattern using different amounts of con-
nectible dots.

2.2 Attacking Classical Authentication for Mobile
Devices

There exist many different attacks to mobile device authentication based
on PIN, password an pattern unlock. The most important is the shoulder
surfing attack, which is relevant to other domains too – but there also exist
other attacks, such as the exemplary stated smudge and acceleration sensor
attack.

2.2.1 Shoulder Surfing Attack

All three mentioned mobile device unlocking mechanisms – PIN, password
and unlock pattern – are prone to the shoulder surfing attack [161, 176].
With the shoulder surfing attack, an attacker watches the display while the
legitimate user authenticates, and thereby observes the shared secret. The
shorter the secret used for authentication is, the easier and more inconspic-
uous a shoulder surfing attack can be conducted. Shoulder surfing attacks
are a widely known problem not only for mobile devices, but e. g. also for
entering a PIN at an ATM – which essentially is the same problem. Different
approaches specifically developed to be shoulder surfing resistant have been
proposed, e. g. by De Luca et. al. for ATMs by using a color scheme [53]. For
the mobile domain, De Luca et. al. propose different approaches for shoulder
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surfing resistant authentication, such as a back-of-device authentication [54]
or with implicit features derived from performing a pattern unlock [55]. Fur-
ther, there exist a wide variety of graphical password schemes (e. g. [193]),
for which overviews are provided e. g. by Bidde et. al. [16] or Hafiz et. al. [85].

2.2.2 Smudge Attack

Besides being prone to the shoulder surfing attack, the pattern based unlock
approach is prone to another attack more specific to this approach: the
smudge attack [9, 202]. With the smudge attack, attackers analyzes the
display of the mobile device after the legitimate user authenticated. They
thereby observe the pattern that remains on the display of the device, due
to the residual grease left by unclothed fingers (see figure 2.3). Afterwards,
the attackers can use a simple replay attack and use the just observed secret
to authenticate with the device.

(a) Unlock pattern (b) Residual grease

Figure 2.3: Residual greases on the device’s display after performing a
pattern based unlock [202].

2.2.3 Motion Based Keystroke Inference Attack

As with the shoulder surfing attack, all three widely used authentication
approaches – PIN, password and unlock pattern – are prone to the “motion
based keystroke inference attack” [35] (acceleration sensor attack) under cer-
tain circumstances. For reasons of tactile feedback entering a character or
connecting a dot during unlocking widely causes the device to vibrate. As-
suming that vibration based tactile feedback is enabled during unlocking the
device, an application running on the device could use built in acceleration
sensors to record the unlocking vibrations. Based on recorded vibrations
the secret used during unlock can possibly be derived, as conducted e. g. by
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Aviv et. al. [8] or Cai et. al. [35, 36]. This attack requires an application to
be running on the mobile device, which monitors the device’s acceleration
values during authentication. As this is a form of malicious software con-
ducting a side channel attack in order to obtain a secret, the device itself has
to be thought of being compromised – which distinguishes this attack from
the shoulder surfing and smudge attack. The main issue with this attack is
the acceleration sensor values not being thought of deserving protection at
this point in time.

2.3 Biometric Authentication on Mobile Devices

Besides using PIN, password and pattern based unlock, there exist a vast
variety of other authentication approaches for mobile device, such as using
context [169], NFC tags or image based gesture puzzles [163] as authenti-
cation and access criteria for mobile devices. Another concept for mobile
device authentication is using biometric information, which is a form of in-
herence based authentication: users authenticate by providing information
about something they are. Consequently, biometric authentication is concep-
tually resistant to the shoulder surfing attack. Typical steps with biometric
authentication are:

1. Obtain input data, containing the user’s biometric information.

2. Extract or derive features from the obtained data. This features have
to be discriminating amongst different users.

3. Recognize the user based on the extracted features. This is often done
using a distance measurement between features and/or by using a
learning approach.

Widely known forms of biometric information used for authentication
include using fingerprint, DNA, retina and face [52, 99]. Besides those, there
exist other approaches, such as hand-, gait-, ear-, voice- or even shaking-
based recognition (e. g. [141]). When using biometric authentication in the
mobile domain, additional hardware is required for some approaches by now.
The most important approaches conceptually applicable in the mobile do-
main with current device technology are described in detail below.

With every approach to directly using biometric information for authen-
tication, key revoke can be prohibitively difficult (i.e. when the stored tem-
plate or reference images were compromised and the authentication data
would therefore need to be changed). Consequently, authentication based
on biometric information should not target high security systems, but – as
example for our approach – personal mobile devices that are in frequent use,
where this approach is more convenient to use and still provides a higher
security level than current approaches.
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2.3.1 Speaker Recognition

The idea with using speaker recognition is recognizing users by their voice.
First, an audio stream is recorded with the user speaking either a predefined
or a randomly chosen text. Sometimes this stream is filtered in order to
suppress noise and background voices. Then, features are derived from the
audio stream, which – as for other biometric authentication approaches –
are required to be distinctive. Usually, deriving distinctive features is harder
with a randomly chosen text than with using a predefined text. Finally, the
derived features work as input to classifiers, which distinguish between users.
In terms of cognitive load the user only has to remember a key phrase with
using a predefined text. In order to perform speaker recognition on a mobile
device, the device only needs to contain a microphone capable of adequately
recording human voice – which is basically present in each current smart
phone. An approach for attacking speaker recognition is by using a replay
attack (e. g. [187]), based on a recording of the legitimate user speaking either
the predefined or a random pass phrase. In order to resist this attack, the
system can require the user to speak a displayed text – randomly chosen by
the system (e. g. [10]). This requires the approach to verify that the spoken
text matches the displayed text, additionally to perform speaker recognition.

Kinnunen and Li [107] give an overview of state of the art approaches to
text independent speaker recognition, Lawson et. al. [113] give an overview
of state of the art approaches to speaker recognition for the mobile domain.
Fatima and Zheng [61] focus on approaches to short utternance speaker
recognition (SUSR), which is speaker recognition based on a small amount
of training and test data. An additional challenge – specially in the mobile
domain – is treating background noise present additionally to the speaker’s
voice [122, 131]. E. g. Rao et. al. [148] focus on noise robustness in their
mobile device speaker recognition approach. They utilize multi-SNR and
multi-environment speaker models consisting of neural networks for speaker
recognition and evaluate their approach by adding different types and lev-
els of noise. Chetty and Wagner [43] propose a robust speaker recognition
system which is based on fusion of audio-lip motion recognition, audio-lip-
correlation and 2D/3D motion range information within recognition cas-
cades. Hautamäki et. al. [87] use maximum a posteriori vector quantization
(VQ-MAP) as a simpler version of maximum a posteriori adapted Guassian
mixture models (GMM-MAP) for speaker verification.

2.3.2 Gait Recognition

The idea behind gait recognition (e. g. [133–135, 183, 192]) is to distinguish
users by information derived from their gait, which is their distinctive style
of walking (see figure 2.4).
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Figure 2.4: Example of gait consisting of different phases – which are used
when deriving features for gait recognition [183].

First, most approaches use sensors (such as accelerometers or a gyro-
scope) to record the gait while the device is e. g. in a trousers pocket. This
recording often is filtered to discard noise. Then, features are derived from
the gait recordings. This may include an initial extraction of gait cycles (a
cycle is a reoccurring unit containing two steps). Finally, as with other ap-
proaches, these features are handed to classifiers in order to perform user
recognition. Gait recognition is conceptually different from the other stated
biometric recognition approaches, as it is not done at a certain point in time,
but continuously. With gait recognition, a user cannot instantly perform a
device unlock, as gait recognition requires a) the device to be e. g. in the
trousers pocket and b) a gait recording while the user walks, which is longer
than e. g. the recording required for speaker recognition. Therefore, gait un-
lock is an implicit (passive) mobile device unlock and works as follows: users
walk with the device being e. g. in their trousers pockets, and the device
knows it’s with an authorized user. When users wants to use their device
while walking or a few seconds after walking, they can pick the device from
their pocket and use it right away – as the device knows, that it has been
with an authorized user up to the last seconds and assumes that its current
user is a legitimate user. Consequently, the device notices and locks itself
when users take the device out of their pocket and put it somewhere else.

As with all implicit authentication approaches, with gait unlock the user
does not have to remember an unlocking secret, therefore does not to have
to remember any cognitive load. A possibility to attack gait based recogni-
tion is by using a replay attack, which simulates the legitimate user’s gait.
Aggregating data for performing a replay attack is conceptually more com-
plicated than with other approaches – as gait data is not available to the
public (in contrast to e. g. data for face unlock, for which images can possi-
bly be fetched from social networks) and cannot be recorded uncomplicated
(as with voice unlock, for which data could be recorded while talking to the
legitimate user). Recording a user’s gait would require e. g. a malicious mo-
bile device application installed on the user’s device, which secretly records
the user’s gait. We are not considering this threat in further detail, as the
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device itself has to be thought of being compromised at this point. Besides
the mentioned advantages of gait unlock, the main disadvantage is the user
not being able to perform the unlock immediately at a certain point in time.
Therefore, gait unlock is no alternative to the other biometric mobile device
unlock approaches, but an addition in order to increase unlocking usability.

2.3.3 Face Recognition / Face Unlock

With face unlock, the mobile device unlocks for authorized users by recog-
nizing their face, observed by a built-in camera. The core component of face
unlock therefore is face recognition, which is used to distinguish between dif-
ferent people by their biometric facial information. First, the device records
the user’s face (e. g. a single photo, a photo series or a video, see figure 2.5)
with a device integrated camera. Next, face detection and segmentation are
used to a) find the face position in the recorded images and b) extract the
face from the image to a smaller image only showing the face (e. g. rectan-
gular crop area). Finally, face recognition is performed on extracted faces in
order to distinguish between users.

(a) (b)

Figure 2.5: A user performing a face unlock with a) the user presenting his
or her face to the camera and b) the camera recorded face image.

In terms of duration and usability, face unlock can conceptually be faster
than the classical authentication approaches (PIN, password, unlock pat-
tern) and other presented biometric authentication approaches (speaker and
gait recognition). As with the other biometric authentication approaches,
face unlock is not prone to shoulder surfing or similar attacks, and the user
does not have to remember an unlocking secret with face unlock.
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Besides these advantages, face unlock approaches are conceptually prone
to the shoulder surfing attack, with which an attacker spoofs the authentica-
tion by presenting a photo or video of the legitimate user to the camera (see
section 2.3.4). Only using frontal perspective biometric facial information
for face unlock – which is the case for most of the currently existing face
unlock approaches – makes performing photo attacks even easier.

2.3.4 Photo Attack

With a photo attack, an attacker spoofs face based authentication by pre-
senting a sufficiently large and high-quality photo, series of photos or video
to the camera (see figure 2.6). Most current mobile device face unlocking
systems only utilize frontal perspective face information, which makes per-
forming a photo attack even easier – as only frontal and no profile perspec-
tive face images have to be aggregated previously to the attack. For many
people, this data can be grabbed from social networks or video platforms
without restrictions and costs – as this data only yet starts being consid-
ered as deserving protection. Additionally, the grabbed data might likely be
of higher quality than the data actually recorded with a mobile device by
legitimate users in certain situations – in which face unlock is expected to
work accurately nevertheless (e. g. legitimate users recording their faces from
slightly below with additional backlight, which results in bad illumination
of the face).

(a) (b)

Figure 2.6: A user performing a photo attack to circumvent a mobile device
face unlock with a) the user presenting a printed photo of the legitimate user
to the camera and b) the camera recorded face image.
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There exist different approaches specially developed to prevent photo
attacks in face authentication approaches (overview e. g. Pan et. al. [139]),
with an excerpt being presented here. Wagner and Chetty [188] provide an
overview of state of the art liveness assurance approaches for face authenti-
cation systems to overcome photo attacks. A common approach to liveness
assurance is eye blinking, such as used in combination with pupil movement
by Teja [177]. The face authentication system of Frischholz and Werner [75]
instructs the user to look into certain directions during authentication. Using
head pose estimation, the system then recognizes if the user reacts according
to the instructions. Tronci et. al. [179] combine video and static frame anal-
ysis of faces to avoid photo attacks. Bao et. al. [11] use an optical flow field
to determine if the recorded face is on a two dimensional plane instead of
being a three dimensional head. With not only including visual information
during authentication, Bredin et. al. [27] propose an approach based on face
and speech authentication, which aims to be replay attack resistant by ap-
proving the correspondence between audio and visual information recorded
during authentication. Bharadwaj et. al. [15] use motion magnification for
facial spoofing detection in videos. They detect and enhance small facial
expressions in order to detect local binary pattern texture features. They
further perform motion estimation using HOOF optical flow descriptors.

In order to test capabilities of resistance to photo attacks, there exist
several photo attack databases containing photos and videos for spoofing
attacks, such as the Print-Attack database by Anjos and Marcel [7] or the
Replay-Attack database by Chingovska et. al. [44].



Chapter 3

Related Work

In this chapter we present a comprehensive review of face unlock approaches
and their most frequently used core components. Most existing authentica-
tion approaches based on biometric face information conceptually feature
a face detection, face segmentation and face recognition module (see fig-
ure 3.1).

Face Image
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Figure 3.1: Face detection, segmentation and recognition as frequently used
core components of a face unlock toolchain.

The first module (face detection) is used to localize faces in recorded
images. For mobile device unlock based on biometric face information, there
is only one face to find (face localization) in the regular cases. The second
module (face segmentation) extracts faces localized by the face detection
module from recorded images to separated, smaller images. In most cases,
the face segmentation module is integrated into the face detection module
and not mentioned separately, as it is very simple (such as cropping the
image to the rectangular area the face was found in). The final module (face
recognition) checks the user’s identity based on the segmented face images
in order to decide on authentication.

Manabe et. al. [123] provide an overview of biometric authentication ap-
proaches on mobile devices. Tao and Veldhuis [175] propose a mobile de-
vice face unlock approach using Haar-like feature based face detection, a
local binary pattern based filter to achieve illumination invariance and like-
lihood ratio feature verification for face recognition. They evaluate their

15
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approach with photos recorded with mobile devices and using the Yale Face
Database B [80]. Abdel-Hakim and EI-Saban [2] implement a mobile face au-
thentication system using a graph model for face representation and low rank
matrices composed of the graph attributes with Euclidean distance measure-
ments for face recognition. They evaluate their approach on a small dataset
recorded with mobile device cameras and using the FRGC face database 2.0
dataset [145]. Ijiri et. al. [98] implement and evaluate an face unlock system
for mobile devices using studio photographs – although they don’t describe
their test data or the used face detection and recognition approach in de-
tail. Chen et. al. [42] describe a multi-user face unlock approach based on
sparse coding (requiring less samples) that they mention to be applicable to
the mobile domain. They use Eigenfaces and a k-nearst neighbor algorithm
for recognition, but don’t describe their face detection and segmentation
approach.

Beside these approaches, there exist many hybrid authentication ap-
proaches designed for usage in the mobile domain. Most of them have been
implemented and evaluated for research purposes, but not yet been imple-
mented and made available for broad usage on mobile devices. A face and
eye detection for mobile devices is developed by Hadid et. al. [84], based on
Haar-like features and AdaBoost. They verify their approach by using local
binary patterns for face recognition and authentication. In recent research,
McCool et. al. [128] report increased authentication rates by combining real-
time face and speaker recognition for mobile device authentication in the
MoBio project. So do Tresadern et. al. [178], again in the MoBio project –
they localize a face in size and position using sliding window face detection
and cascaded local binary pattern classifiers. For face normalization, they
fit the face shape and texture using active appearance models, then remove
background information and transform the face to a normalized shape with
standard brightness and contrast. For face recognition, they first remove
illumination effects using gamma correction, difference of Gaussian filter-
ing and variance equalization. Then they compute three differently sized
local binary patterns for every pixel and use the resulting histogram as
feature vector for classifiers, for which they use simple distance measure-
ments. Similar approaches have been implemented and evaluated, e. g. by
Mayrhofer and Kaiser [127] and Shen et. al. [170], who also report improved
authentication results with fusing face and speaker recognition in their mo-
bile device authentication approach. Kim et. al. [106] extend the fusion of
face and speaker recognition by using teeth recognition in their multimodal
authentication approach for mobile devices.
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3.1 Face Detection and Face Segmentation

Face detection is finding human faces in images, if there are such. This task
most commonly includes finding the position and size of the face, but may
also include finding the rotation and perspective of the face. Face segmen-
tation deals with the extraction of faces found by face detection from the
originally recorded images. Separating face and non-face related information
in images is an important prerequisite e. g. to face recognition, which con-
ceptually should only utilize face related information. In many cases, face
detection and face segmentation are performed together in a single step or
directly one after another – and face segmentation is not mentioned as a
self-contained component. Both are commonly used as prerequisite to face
recognition, but also in advertisements or with autofocusing on faces with
digital cameras. There exist many concepts to face detection and segmenta-
tion. In general, these approaches can be grouped into two top level classes,
such as done by Hjelmås and Low [92] (see figure 3.2): biometric/geometric
feature-based and image-based (view-based) face detection approaches.

3.1.1 Face detection with biometric/geometric features

Face detection based on biometric/geometric facial features uses knowledge
about the alignment of a human face elements, such as position of eyes,
nose, mouth, ears and eyebrows, the face contour or brighter/darker skin
areas caused by shadows of the face surface structure. As these approaches
need face related features in order to find a face by design, they conceptually
cannot be applied to problems other than face detection without major mod-
ifications. Further, when detecting faces from different perspectives, likely
different biometric features have to be derived – which results in structural
different face detectors for different perspectives. Hjelmås and Low [92] group
face detection approaches based on biometric/geometric facial features in
three further classes: low-level analysis, feature analysis and active shape
models. Low-level analysis based face detection derives visual features from
the image pixels. This include edges, differentiation between grayscale and
color pixels or – if a video is available – changes of pixels between frames.
The problem of features derived by low-level analysis tending to be ambigu-
ous is addressed by feature analysis based face detection. There, a high-level
feature analysis is performed on features derived by low-level analysis in
order to verify them, either by checking their constellation or by deriving
features in a predefined order based on previous knowledge. With active
shape models, the knowledge about facial-feature constellations is used to
form a shape model, which then actively tries to match a potential face in
an image. Amongst the important approaches which evolve towards a po-
tential face location are snakes, deformable templates and point distribution
models.
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Figure 3.2: Classification of face detection approaches by Hjelmås and
Low [92].

3.1.2 View-based face detection

As deriving biometric/geometric facial features explicitly from prior knowl-
edge is error prone to many different external influences (such as changes
in rotation, image illumination or background information) there exist ap-
proaches deriving these features implicitly within view-based face detection.
View-based face detection approaches use image pixels for detection without
making use of biometric and geometric facial features explicitly. Therefore,
these approaches usually require training data, which acts as prior knowledge
and from which features are derived implicitly. Consequently – in contrast
to feature based face detection – view-based approaches are conceptually
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applicable to face detection from different perspectives and even non-face
related detections without major changes to the approach (usually only dif-
ferent training data is required). In their survey, Hjelmås and Low [92] group
view-based approaches into the following three groups: approaches based on
linear subspace transformations, on neural networks and on statistical ap-
proaches. Linear subspace based face detection aims at transforming the face
into a face space – other dimensions better representing faces. Among these
approaches are e. g. the well known principal component analysis (PCA) and
linear discriminant analysis (LDA) [124]. Neural network based approaches
learn discriminating facial features implicitly from training data and fre-
quently include transformations and/or filtering of pixel values as prepro-
cessing. Statistical approaches to face detection include e. g. using support
vector machines and decision trees/decision networks.

3.1.3 The Sliding Window Principle

Especially with using view-based face detection approaches a commonly used
technique is the sliding window principle. With sliding window face detec-
tion, a search window smaller than the original image is shifted through the
image with an arbitrary stepwidth (see figure 3.3).

Figure 3.3: With sliding window face detection, a search window is shifted
through the image inside which face detection is performed [64].

On each position the search window is shifted to, face detection is per-
formed on the part of the image currently contained in the search window.
In order to find faces of different sizes with a sliding window principle, more
than one such sliding window processes with differently sized search windows
are used. At a given search window size and position, the face detection has
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to decide if the current window actually contains a face or not (e. g. with
using a probability value and a threshold separating between face and non-
face detections). As there will be multiple detections with slightly changed
search window positions and sizes next to each other, only the match with
the highest probability inside a certain area will be accepted as detected
face. Further, some sliding window face detection approaches include multi-
ple phase detection: in the first phase, a coarse stepwidth is used for shifting
the search window across the image and for scaling the search window. In
later phases, these stepwidths are decreased in order to match a face position
and size more precisely. On each position and size of the search window, face
detection is performed on the image part currently covered by the window.

3.1.4 Challenges of Face Detection in the Mobile Domain

In literature, face detection and segmentation are often considered to be
widely solved problems due to the vast amount of approaches delivering
promising results. This assumption is based on certain further assumptions –
limitations and restrictions to the test scenario – most of the approaches have
been evaluated on. When speaking about evaluation data these approaches
have been tested on, in many cases one or more of the following limitations
apply to the test data recording scenario:

• Using roughly equal illumination conditions, especially only using a
limited amount of background lightning.

• Using data with fixed, minimum image quality, e. g. only showing a
limited amount of fuzziness.

• Using limited, homogeneous or roughly equal background information
across all data.

• Limiting the allowed changes in participants’ style and appearance,
such as changed beard style, using/not using glasses or different facial
expressions.

• Limiting the distance and rotation variance of the user’s head.

When applying face detection in the mobile domain, these assumptions
do not hold as they do for many test sets. Consequently, face detection
cannot be assumed to be a widely solved problem for all scenarios. Further,
mobile devices still feature less computational power than is available on
most personal, non-mobile computers. Therefore, for mobile face detection
approaches a certain processing speed is mandatory.

3.1.5 Face Detection in Literature

There exist a vast amount of approaches to face detection and segmenta-
tion. Important research towards both successful face detection and face
recognition based on Eigenfaces was conducted by Turk and Pentland [181].
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Rowley et. al. [153] use neural networks for face detection. They at first
build up an input image pyramid by scaling the input image to multiple
sizes, then perform sliding window based face detection. Next, they extract
the image content for each window position, perform illumination correction
and histogram equalization. Then, they use the extracted pixels as input to
a feed forward neural network. To avoid multiple detections close to each
other they finally merge overlapping detections. In succeeding research Row-
ley et. al. [152] extend their approach by incorporating rotation invariance.
Haar-like features based on wavelet representations of objects were used by
Papageorgiou et. al. [140] for general object detection and later used by Viola
and Jones [186] for face detection in their well known object detection frame-
work. Lienhart and Maydt [115] extended the approach proposed by Viola
and Jones with easily rotating features to a computationally fast and de
facto standard approach of face detection [185]. Sung and Poggio [174] used
view-based model clusters that distinguish between “face” and “non-face”
incorporating a Mahalanobis distance measurement. They evaluate their ap-
proach only on frontal face images, but the approach could conceptually also
be trained for any other perspective. Bayesian discriminating features were
used by Liu [119], which compare likelihood density estimations of an image
to decide if an image contains a face. Schneiderman and Kanade [164–166]
propose an object detector also applicable to face detection. Their approach
is based on statistics of image parts extracted by using wavelet transforma-
tion. Jesorsky et. al. [101] use a face shape comparison in order to detect
faces in images. The approach aims to be robust to changes in illumination
and background with extracting edges from faces and comparing them by
using the Hausdorff distance [154]. Kienzle et. al. [105] propose computa-
tionally fast approximations to support vector decision functions for usage
in face detection. They replace derived support vectors by a smaller amount
of synthesized input space points in order to reduce computational complex-
ity. Sahoolizadeh et. al. [155] combine Gabor wavelets and neural networks
for face detection and recognition. Douxchamps and Campbell [58] combine
Viola and Jones based face detection with various filters to obtain a good
face detection tracking rate in videos [58]. Abiantun and Savvides [3] use
Real AdaBoost with 3 explicit bins (positive, negative, abstain) to obtain
a single, strong face detector [3]. Dalal and Triggs [50] focus on deriving
robust features for human detection – but their approach can conceptually
be applied for facial detection as well. They propose the usage of grids of
Histograms of Oriented Gradient (HOG) for constructing feature sets and
show that their approach outperforms many previous approaches to human
detection in terms of computation complexity as well as detection accuracy.

Finally, the use of skin color for face detection was investigated by differ-
ent authors, e. g. Hsu et. al. [95], Martinkauppi [125] and Zarit et. al. [199],
but turned out to be less reliable than other approaches.
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For a more comprehensive review of existing face detection approaches we
refer to the surveys of Hjelmås and Low [92], Degtyarev and Seredin [51] and
Yang [198]. Further, Huang et. al. [96] review local binary patterns for facial
image analysis, namely face detection, facial expression analysis and face
recognition, and Santana et. al. [157] provide an overview of facial feature
detectors build upon the Viola and Jones object detection framework.

3.2 Face Recognition

Face recognition is deriving the identity of people from their faces. This
is done by assigning a label (identity) to face with yet unknown identity,
which makes face recognition a classical pattern recognition problem. Face
verification is a binary form of face recognition: it does not derive the iden-
tity from a person’s face, but either confirms or negates a proposed identity
for a given face. Nevertheless, face verification is often called binary face
recognition or simply face recognition in literature. Face recognition is used
in a wide variety of application areas, such as in surveillance (e. g. CCTV),
in access controls (e. g. building/device access, border controls), in the ad-
vertising domain, in human computer interaction (HCI) or robotics. Also
mobile device face unlock incorporates face recognition as a key component.
As face recognition requires face information as input, reliable face detection
is the most frequent prerequisite to face recognition.

As with face detection, there exist two top level approaches to face
recognition: using geometric features and view-based (appearance-based)
face recognition. Geometric feature based face recognition incorporates the
knowledge about geometric alignment of human face elements, such as eyes,
nose, mouth, eyebrows and ears or the face contour. From this geometric
alignment biometric features are derived, which further are used for face
recognition. In general these approaches therefore cannot not be applied to
data other than faces without major modifications. Further, face recogni-
tion from different perspectives likely requires deriving different geometric
features. With view-based face recognition, the pixel values itself are used
for face recognition without deriving geometric features first – but may in-
clude arbitrary transformations of pixel values without knowledge about
geometric features (e. g. subspace transformations such as PCA). As these
approaches do not incorporate finding biometric facial elements based on
prior knowledge of a face’s structure (but derive implicit biometric features
from training samples) these approaches can be applied to different perspec-
tives and even data other than faces (again requiring corresponding training
data).
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3.2.1 Face Recognition Accuracy Measurements

When looking at the task of successfully performing face recognition, face
detection must provide good results as input to the recognition in terms of
a) a high rate of correct detections and b) a good face normalization. When
looking at normalization, it is important that all detected faces roughly
include the same area of facial information (e. g. from the left to the right
ear and from the hair line to the chin) – and that inside the area marking a
face, the faces should be positioned equally (such as centered at the nose).
When measuring the face detection rate itself, the performance can be stated
as amount of correct detections (true positives) and the amount of wrong and
missing detections (false positives and false negatives). A low true positive
rate means that many faces are missed during detection – which causes the
face recognition to have less data available during training and classification.
A high false positive rate means that many detections don’t actually contain
faces – which causes the face classifiers to learn from non-face images. Both
cases will decrease the recognition rate and should therefore be avoided.

Unfortunately, the detection rate is not the only factor influencing face
recognition. Estimating the detection rate for a specific face detection ap-
proach depends on making a binary choice for each of the images if the
face was detected correctly or not. This includes a tolerance in terms of
normalization so that faces e. g. slightly shifted to one side, scaled slightly
differently or with a certain amount of background information still present
will also be counted as correctly detected faces (see figure 3.4).

Figure 3.4: Face images after face detection showing background informa-
tion and unequal normalization in size and position [62].

If the grade of face normalization provided by face detection and seg-
mentation is not sufficient, subsequently applied face classifiers will not only
learn the face-discriminating features, but also discriminating features in
normalization1. E. g. if the face of subject � is shifted to one side of an image,
a classifier will also learn the shift besides learning the face properties. If a
face of subject � has the same shift, the classifier will more likely classify this
face as originated by subject �.The same applies for background information
present in face images after face detection, e. g. with using a rectangular crop
area for face segmentation. Again, face classifiers will learn discriminating

1When not learning from geometric but appearance-based features.
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features in background information additionally to the face-discriminating
features. Consequently, the detection rate itself is a poor indicator for the
impact of face detection quality on the subsequent face recognition step.

3.2.2 Challenges of Face Recognition in the Mobile Domain

In general face recognition is – in contrast to face detection – not yet as-
sumed to be a widely solved problem. One of the reasons for this conclusion is
that face recognition relies on feasible and normalized face detection results,
which is a complicated task itself when not incorporating scene restricting
assumptions. Further, face recognition faces the same challenges as face de-
tection, which again lead to decreased correct recognition rates. Amongst
the overall challenges of face recognition are (e. g. Khashman [104]):

• False face detection results are passed to face recognition as input. This
leads to the face recognition learning non-face related information.

• Differently normalized face detection results handed as input to face
recognition, e. g. face images with slightly changed face position and
size inside the image. This can lead to the face recognition learning
features related to the normalization besides learning biometric facial
features.

• Changing illumination conditions and backlight. Again, this can lead
to face recognition learning features not related to biometric face in-
formation.

• Bad image quality, such as small image dimensions, bad image sensor
quality, motion blur or depth of field. This possibly leads to the loss
of important biometric information.

• Background information still included in face images after face de-
tection and segmentation. Especially strongly changing background
information can lead to face recognition learning features related to
background information.

Not all of these challenges and possible problems apply to all approaches
of face recognition. E. g. an approach based on geometric facial features can
possibly avoid learning from background information at all – assuming a
correctly detected face.

3.2.3 Face Recognition in Literature

There exist a vast amount of approaches to face recognition, from which we
are stating an excerpt here in order to present the huge diversity of face
recognition approaches. The first approach to face recognition recognized
widely as successful was proposed by Turk and Pentland [181], which in-
corporated Eigenfaces for face detection as well as face recognition. Their
work is based on previous research by Sirovich and Kirby [171], which were
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the first to publish the usage of Eigenfaces for face representation. Besides
others, they identified changes in illumination as a major problem to their
approach. Belhumeur et. al. [13] address this problem with their approach
of using FisherFaces for facial recognition. They evaluate their approach in
direct comparison to the baseline of Eigenfaces for recognition. Addition-
ally, Brooks and Gao [31] perform an evaluation of FisherFaces across pose.
Georghiades and Belhumeur [80] also address changes in illumination as well
as viewpoint. They therefore use a view-based approach with training sam-
ples showing all illuminations and and poses to automatically reconstruct
face shapes. A comparison of geometrical feature based and view-based face
recognition was conducted by Brunelli and Poggio [32, 33]. Gordon [82]
combines images of faces recorded from frontal as well as profile perspective
in order to perform face recognition. They at first normalize input images
and extract different geometrical facial features. Based on this informations,
they extract several parts of the images and use them for face recogni-
tion. Neural networks for face recognition are discussed by Mitchel [132].
Lin et. al. [116] propose using probabilistic decision-based neural networks
(PDBNN) for face detection as well as recognition. At first they determine
the size and position of a face inside an image, then locate the eyes inside
the face for normalization reasons. Then, they extract regions containing
eyebrows, eyes and nose and perform face recognition using their proposed
classifiers. Wiskott et. al. [194] propose the usage of elastic bunch graph
matching for detecting and/or recognizing faces using only a single image
per subject. In order to incorporate face images with different normalization
in terms of position, size, facial expression and pose, they form image graphs
out of geometric facial features. They extraction of an image graph is based
on a previously build bunch graph, which is positioned using elastic graph
matching. They further use different graph structures for finding and recog-
nizing faces. Li and Lu [118] propose the usage of feature lines, which connect
features of the same class in an arbitrary feature space. For face recognition,
they further use nearest feature line face classification. Bourel et. al. [22]
propose a facial feature extraction approach and use geometric facial fea-
tures to perform tracking tasks. Cootes et. al. [47] also extract feature points
from faces in order to capture the shape of faces. They explicitly target the
problem of geometrical facial features mainly being used for near-to-frontal
perspectives and evaluate their approach with multiple viewpoints around
participants’ heads. Gao and Leung [78] perform face recognition based on
line edge maps (LEM). They address changes in illumination as well as
changes of pose and facial expressions in their approach. Further, they state
LEM as a form of representing faces which might be useful for further facial
processing tasks, such as facial expression recognition. Meng et. al. [130] use
radial basis function based neural networks in order to train their face clas-
sifiers with only a small amount of training data in comparison to amount
of features – a problem frequently encountered in face recognition. Liu and
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Wechsler [120] use a Gabor-Fisher classifier (GFC) to perform robust face
recognition in terms of changing illumination and facial expression. At first,
they derive Gabor features from face images, then reduce the Gabor fea-
ture vector size by applying the Enhanced Fisher linear discriminant model.
Local Binary Patterns were proposed by Ojala et. al. [138] for scaling and
rotation invariant texture classification and later used by Ahonen et. al. [4]
for face detection. They split face images into smaller subregions, extract
local binary pattern histograms which they concatenate to a single fea-
ture vector and use a nearest neighbor algorithm to perform the actual
face recognition. Tsalakanidou et. al. [180] use Eigenfaces to recognize faces
based on color as well as range information. They focus on stating usability
of range information in face recognition and evaluate the usage of separate
classifiers for color and depth as well as a combining both features spaces
for classifiers. Overall, they state a significant increase in recognition ac-
curacy incorporating facial range information. Geo et. al. [77] use a fusion
of multiple views of a person’s face for face recognition, which is similar
to our pan shot approach. They evaluate their approach using the Stirling
face database (PICS)2. Bronstein et. al. [30] address expression variant face
recognition with their approach to 3D face recognition. They map 2D facial
texture images onto 3D geometry, then use PCA to derive comparative fea-
tures for recognition tasks. Weyrauch et. al. [191] perform face recognition
using component-based 3D morphable models. They address illumination
and pose invariance: they use a 3D morphable model of a human head to
create 3D models of users’ heads, using only three 2D images of each user
projected onto the 3D model. Based on the model, different components are
extracted and used for face recognition. Riaz [149] directly compares differ-
ent implementations of neural networks, Hidden Markov Models (HMM),
principal component analysis (PCA) and independent component analysis
(ICA) for face recognition. Venkataramani et. al. [184] compare correlation
filter, individual PCA and FisherFaces as approaches to face recognition
in the mobile domain. They evaluate their implementation using an image
database created from mobile devices. He et. al. [91] propose Laplacianfaces
for facial representation, which is based on Locality Preserving Projections
(LPP) as a form of facial subspace transformation. Based on this represen-
tation arbitrary pattern recognition mechanisms can be applied to perform
face classification. Nazeer et. al. [137] also use neural networks for face clas-
sification. They extract facial features from detected face images, normalize
these using different approaches (incorporating e. g. histogram equalization
and normalized correlation) and finally perform neural network based face
recognition. Klare and Jain [109] introduce comparative measurement cri-
teria for the effectiveness of facial features by using three levels, ordered

2Psychological Image Collection at Stirling (PICS), available at http://pics.psych.stir.
ac.uk/

http://pics.psych.stir.ac.uk/
http://pics.psych.stir.ac.uk/
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by specificness. Kurutach et. al. [112] use trace transform to obtain view-
based facial features and perform face recognition based on the Hausdorff
distance [154].

For a more comprehensive review of face recognition approaches we re-
fer to the surveys of Abate et. al. [1], Akarun et. al. [6], Bowyer et. al. [23],
Chang et. al. [40], Chellappa et. al. [41], Gong et. al. [81], Huang et. al. [96],
Iancu et. al. [97], Jain et. al. [100], Jones [102], Kittler et. al. [108], Scheen-
stra et. al. [162], Wechsler [189], Zhang and Gao [204], Zhao et. al. [205] and
Zou et. al. [206].



Chapter 4

Building Blocks

4.1 Range Algorithms

We utilize range images for face detection and recognition starting with the
third stage of our implementation (see section 7.3), therefore review the
most important approaches to algorithmically obtain range information in
short. A range image essentially is an image which represents the camera to
object distance (depth) in each pixel – e. g. a brighter pixel correlates to a
smaller, a darker pixel value to a larger distance or vice versa. Beside oth-
ers, range images are utilized in the fields of computer vision, such as scene
reconstruction and object detection from neurobiology to robotics. There
exist different approaches to construct range images, with the most impor-
tant being structured light and stereo vision. Because of both approaches
use more than one devices (either projector and camera or two cameras),
calibrating these system is very important.

4.1.1 Range Information from Structured Light

Using structured light for obtaining range images conceptually works as fol-
lows (e. g. [12, 24, 38, 66, 156, 160, 203]): a projector unit projects structured
light onto an arbitrary formed surface. Structured light is a known light pat-
tern, which is easy to observe using computer vision techniques. Therefore,
structured light is typically organized in lines or dots (such as for the Kinect
system). Besides the projector there is a camera, which is mounted with a
known relative distance and angle to the projector. The camera observes
the structured light from this slightly different point of view and extracts
the pattern using computer vision. As there is a distance between projector
and camera, the sensed light pattern will look slightly differently from the
projected pattern, depending on the surface structure. Based on this pattern
and the known setup of projector and camera (relative distance and rotation
in 3D), the structure reflecting the pattern can be calculated. In order to ob-
tain the exact setup information, calibration is required. Utilizing structured

28
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light for range image recording has several advantages and disadvantages:
on the one hand, the technique itself is conceptually robust and can be used
without an external source of light. Using light not visible to the human eye
in the projector further enables such systems to work in virtual darkness.
On the other hand, structured light requires a precise projector, which is
uncommon hardware for current mobile devices.

4.1.2 Range Information from Stereo Vision

Using stereo vision for obtaining range images conceptually works as follows
(e. g. [26, 56, 86, 110, 114]): two cameras record the same scene from different
perspectives; using the two images the 3D structure of the scene is recon-
structed. The principle is one of those used intuitively by humans: to obtain
two slightly different images of the same scene using two eyes in order to
observe depth (stereopsis). As the two cameras also look at the same scene
from slightly different perspectives, the recorded images will look slightly
different too. Utilizing the exact camera setup (relative distance between
cameras (eye distance) and rotation in 3D), the range for each pixel can be
calculated using stereo to range algorithms. As for using structured light,
the required, exact camera setup is obtained by calibrating the system. On
the one hand, the main advantage of stereo vision over structured light for
obtaining range images is that it requires less special hardware (stereo cam-
eras instead of projector and camera). There already exist several mobile
devices featuring stereo cameras by now. On the other hand, the approach
conceptually relies on an external source of light and therefore is not as
universal as structured light. As with structured light, this approach can be
used in observed darkness too using an external source of light invisible to
the human eye and corresponding cameras.

4.2 PCA and Eigenfaces

An early approach to successful face detection and recognition was based
representing faces with Eigenfaces [171, 181] which we utilize in the first
stage of our implementation (see section 7.1). With using Eigenfaces, faces
basically are transformed into a subspace (face space) using principal com-
ponent analysis (PCA). In this subspace, a face is represented by a weighted
combination of all Eigenfaces (which are the face space dimensions). As the
core component of Eigenfaces is transforming faces into the face space using
PCA, we explain the concepts of PCA and Eigenfaces in detail below.

4.2.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) transforms a set of samples � from
their original dimensions �O to new dimensions �N , so that �N shows the
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maximum amount of variance amongst data samples. PCA internally uses
orthogonal transformation for finding the new dimensions. Therefore, the
first dimension of �N is chosen so that it shows max. variance amongst
data samples. The succeeding dimensions are chosen so that they a) are
orthogonal to all previously chosen dimensions of �N and b) show maximum
variance amongst data samples.
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Figure 4.1: The first (red) and second (blue) principal component are de-
rived from a 2D point cloud using PCA. The black dot in the center is the
average point which acts as the point of origin for all projections to PCA
derived dimensions.

Mathematically, PCA can be calculated using Eigenvalue decomposition
(decompose data into Eigenvectors and their corresponding Eigenvalues). As
it therefore also depends on the value scaling applied in original dimensions,
it is important to normalize data before performing PCA. The amount of
dimension in �N is conceptually the same as the amount of dimension in
�O when using PCA as an exact, reversible transformation – but often the
less important dimensions of �N are left out when further processing data.
This is done as a) usually samples can be represented fairly well using only
the most important dimensions and b) using less features eases subsequent
processing. PCA is therefore often spoken of and used as a subspace trans-
formation, in which data is transformed to a representation requiring less
dimensions than within the original feature space.

4.2.2 Eigenfaces

With using Eigenfaces in facial image processing, face images are trans-
formed from their original dimensions �O (image pixels) into new dimen-
sions (face space) using PCA. The face space dimensions (Eigenfaces) are
the principal components calculated by PCA using a certain amount of face
images. Each Eigenface can be thought of being a scalable difference of the
average face in face space towards a certain face space dimension. Faces rep-
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resented in face space therefore are composed of a sum of the average face
and the differently weighted Eigenfaces. For this reason, Eigenfaces them-
selves look similar to actual human faces when being transformed back to
the original dimensions �O (see figure 4.2).

(a) (b)

Figure 4.2: Eigenfaces look similar to human faces when transformed from
face space to the original image dimensions (pixels) with a) the average face
used and b) the first five, derived Eigenfaces.

With using an Eigenface representation of faces, faces can be approxi-
mated well with only using a limited amount of the most important Eigen-
faces without actually losing much information. Therefore they are used
within a certain amount of applications processing faces – with the most
widely known approach being Eigenfaces for recognition by Turk and Pent-
land [181] designed for face detection as well as face recognition.

4.3 Classifiers

Starting with the second stage our our implementation (see section 7.2)
we utilize the standard approaches of support vector machines and neural
networks as face recognition classifiers. In the context of machine learning/-
pattern recognition, a classification problem essentially is determining the
class of a sample, of which the class is yet unknown – based on samples
with already known classes [18, 195]. Therefore, classification is a form of
supervised learning. E. g. for face recognition, a face image with unknown
originator’s identity is the sample to be classified. The samples with known
originators’ identities are the source of information, on which the classifica-
tion bases its decisions. The instance performing the classification is called
classifier: it essentially implements a classification algorithm, which first de-
rives (learns) how to distinguish between classes from samples with already
known classes (training data). Based on training data, a classifier is able to
determine the class of a samples with yet unknown class (classification). For
training and classification, samples are handed to a classifier in the form of
an arbitrary amount of features (feature vector), with a features being mea-
surable property derived from the sample. E. g. for face recognition, a face
image feature vector could contain (amongst others) the image pixel values



4. Building Blocks 32

and/or numerical properties derived from the face geometry. With think-
ing of each features as an own dimension, each sample represents a point
in a features space – which is the basis for simple classification approaches
based on feature space distance measurements between samples or nearest
neighbor algorithms, as well as for more complex classification approaches.

Amongst well known classification algorithms such as decision trees and
Bayesian approaches, there exist neural networks and support vector ma-
chines for classification. For both, input data normalization is required, as
discussed in detail in [83, 88].

4.3.1 Support Vector Machines

The approach of optimal, linear class separation on a hyperplane was orig-
inally proposed 1963 by Vapnik and Lerner [182]. Incorporating the con-
cept of using large margins for classification [5] Boser et. al. [21] proposed
the kernel trick for optimal, nonlinear class separation on hyperplanes – by
transforming data into a higher dimension using a predefined transformation
(kernel), in which it classes are better separable.

Support vector machines for classification/pattern recognition [34, 49]
are large margin classifiers: they chose the separation between classes so
that a) samples are optimally classified and b) margins between samples of
different classes are maximized (see figure 4.3).

(a) (b)

Figure 4.3: The concept of large margin classification: a) a nonoptimal and
b) an optimal separation between classes in terms of maximizing the margin
between samples of different classes (adapted from [59]).

A support vector machine tries to find the optimal linear separation
of two classes using given samples in an arbitrary feature space, based on
large margin classification. The classification is done using a linear sepa-
rator between two classes (as shown in figure 4.3). Therefore, multi-class
classification with support vector machines conceptually has to consist of
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multiple one vs. all or one vs. one classifications. Samples are classified us-
ing the shortest distance � between the sample and the class separator. For
a given sample � is intended to indicate the class and distance to the sepa-
rator with a) � ≥ 1 for samples belonging to the first class (positive class)
and b) � ≤ −1 for samples belonging to the second class (negative class).
Therefore, the space covered by −1 < � < 1 is intended to be sample free.
The samples closest to the separator conceptually lie exactly on the class
margin borders (dashed lines in figure 4.3), consequently have a distance of
� = −1 respectively � = 1 and are called support vectors.

Using this hard, sample free margins within −1 < � < 1 is a form of
hard margin classification – which is prone to overfitting: if outliers are in-
cluded in data samples, the support vector machine will chose the separator
so that outliers are also classified correctly and therefore will make the class
margin smaller (or prevent data from being linearly separable). In order to
prevent overfitting, hard margin classification can be relaxed to soft margin
classification, with which samples are allowed to be positioned within the
margin or even to be classified incorrectly – which consequently leads to
� < 1 respectively � > −1 for these samples. With soft margin classifica-
tion, samples lying within the class margin are called support vectors. These
support vectors cause a total error � which is essentially computed as sum
of support vector distances to the class margin border of their class. Dur-
ing the optimization process a support vector machines performs for data
separation, � influences how far samples will be allowed into the margin –
therefore � can further be weighted by a factor � ≥ 0 (cost):

• A smaller � will cause a small penalty for errors caused by support
vectors, therefore allow bigger errors and will lead to class separation
on the one hand being less prone to overfitting, but on the other hand
misclassifying a bigger amount of samples used for training.

• A bigger � will cause a big penalty for errors caused by support vec-
tors, therefore allow only small errors and will lead to class separation
on the one hand being more prone to overfitting, but on the other
hand misclassifying a smaller amount of samples used for training.

Support vector machines are conceptually designed to perform a linear
separation amongst classes. As real life data often is only nonlinearly sep-
arable, support vector machines incorporate the concept of transforming
samples from their original dimensions �L into higher dimensions �H , in
which a linear separation is easier. The transformation is a mathematical
function �(�) : �L → �H , which is called kernel. As finding the optimal,
linear separation in �H will computationally be more intensive due to the
increased amount of dimensions, an equivalent of separating data can be
computed in �L directly (kernel trick). In order for the kernel trick to be
applicable, a kernel must be admissible (the Gram matrix of the kernel must
be positive finite). Amongst the most widely known and applied kernels are
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the linear kernel, the Gaussian/radial basis function kernel, the sigmoid ker-
nel and the polynomial kernel. Each kernel can be configured using several
individual parameters, as explained in detail in e. g. [49].

4.3.2 Neural Networks

Artificial neural networks (often called neural networks only) try to model
the concepts used in a biological brain, using neurons as sources of decisions
and synapses as connections between neurons. The first form of an artificial
neural network was proposed 1943 by McCulloch and Pitts [129] in the form
of perceptron, which originally was a networks consisting of a single neuron.
Incorporating Hebb’s hypothesis of neuron cooperation being correlated with
their spatial distribution [89] neural networks containing multiple neurons
and layers were formed – amongst them feed forward neural networks. Using
multiple layers of neurons required a different approach to learning (such
as [89, 93]). A widely used form of supervised learning for feed forward neural
networks is with using backpropagation [88], with which measured errors
are propagated back through the network in order to learn the intended
behavior.

For classification/patter recognition, feed forward neural networks [17]
try to iteratively learn the correlation between an input pattern (feature vec-
tor) and output pattern (classification result) from training data samples.
Therefore, a pattern recognition feed forward neural network are (in a very
generalized way) structured as follows1. They contain a) an input layer, in
which neurons take the input pattern, b) an output layer in which neurons
indicate the classification result and c) an arbitrary amount of hidden lay-
ers (typical one) which pipe informations (signals) between the neurons of
neighboring layers. Each of the neurons in the network is connected to each
neuron in the previous and successive layer (see figure 4.4a). Each of these
connections holds a weight Ω (usually in the range [0, 1]) which is responsible
for amplifying/damping signals piped over this connection. These weights
usually are initialized randomly before starting the training. Each neuron
contained in the network (see figure 4.4b) further contains a) a propagation
function �p : � → � which combines the weighted signals from neurons of the
preceding layer to a scalar value � (e. g. sum function), b) a transfer function
�t : � → � (e. g. step function or Sigmoid function) which is responsible for
the neuron firing a signal itself and c) an output function �o : � → � which
is responsible for the actual output signal form.

A neural network conceptually learns by adapting the weights of connec-
tions between neurons. In case of a pattern recognition feed forward neural
network, the network learning approach tries to change the weights in a

1There exist a vast amount of different forms of neural networks with basically no con-
ceptual restrictions to modification. Therefore, we only describe a standard feed forward
neural network for pattern recognition at this point.




























































































































































