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a b s t r a c t 

Radio frequency (RF) based indoor localisation techniques have gained much attention over the past 

nearly three decades. Such techniques can be classified as active and passive while passive systems can 

have either device-assisted or device-free characteristics. 

Device-free localisation can be a prominent research field as it transcends other device-based approaches 

in certain application scenarios. Accordingly, we have witnessed an influx of IDFL research focusing on 

multiple disciplines including occupancy, positioning, activity and identity. However, despite the recent 

emergence of several exciting technologies and corresponding techniques, IDFL faces some important 

challenges and because of this, we haven’t come across many mainstream commercial products using 

RF-based IDFL techniques. 

In this article, we survey the recent progress of IDFL prioritising on indoor positioning. We decompose 

the localisation dimensions into occupants, space and time, provide a detailed taxonomy and a compre- 

hensive review of these techniques. We divide the state of the art mainly into Wireless Network-based 

and Radar-based, evaluate the respective technologies and the techniques qualitatively, discuss trends, 

limitations and also indicate future research directions relevant to this field. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Indoor localisation is a diverse research field having applica-

tions in health care [1,2] , assisted living [3] and fitness monitor-

ing [4] , building automation [5] , security [6] , retail [7] , games and

entertainment [8] . It is a much more challenging topic than out-

door localisation due to the requirements of applications (prefer-

ably sub-meter level location errors) as well as the challenging na-

ture of indoor environments. Indoor spaces are dominated by mul-

tipath, the line of sight may be obstructed in most situations and

due to the complex nature of indoor environments, adapting the

system to different places is also challenging. Due to these reasons,

delivering the accuracies demanded by many applications at a rea-

sonable cost can be a daunting task. Nonetheless, many localisation

techniques have been proposed to address these issues and some

are slowly finding their way into commercial production [9] . 

The existing indoor localisation approaches can be classified

broadly as active and passive localisation depending on the partic-

ipation of the subjects to be localised. Active localisation in par-
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icular, relies on subject participation, in essence, dedicated appli-

ations in devices or tags attached to subjects communicate with

 server to locate or track them. Widely used technologies in ac-

ive localisation are RFID, infra-red, Ultra-Wideband (UWB), Wi-Fi,

SM, FM, geo-magnetic, Bluetooth, ultrasound or a fusion of data

ollected from a combination of such methods. As the focus of this

urvey is on technologies that do not require user participation, a

etailed description of active localisation techniques remain out of

he scope and we direct interested readers to the following surveys

or further details on this topic [10–14] . 

Comparatively, passive approaches can locate either devices

mobile phones, RFID tags, laptops), humans or other passive ob-

ects (objects not having radio capabilities) without their participa-

ion. The subjects are usually unaware of a passive localisation sys-

em’s existence, barring any legal obligations requiring notifications

o occupants beforehand. Depending on whether ‘a person’ or ‘a

evice’ is located, these approaches can be further divided into two

ub-categories: device-based and device-free . In device-based passive

ocalisation, a device worn by the localisation subject is detected

nd located by other devices. As an example, a device with Wi-

i capabilities (e.g. mobile phone) can be tracked by Wi-Fi sniffers

15–17] from the beacons it sends periodically or a simple RFID tag

ttached to a person can be tracked by a reader [18,19] . In device-

http://dx.doi.org/10.1016/j.adhoc.2017.06.007
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Fig. 1. Classification of indoor localisation schemes. The focus of this survey is high- 

lighted in green. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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ree passive localisation, a live (a person or an animal) or a passive

bject is directly detected and located. Fig. 1 illustrates this clas-

ification while Fig. 2 a and b exemplify the distinction between

ctive, device-based passive versus device-free passive localisation

sing two scenarios. 

Device-free localisation approaches capitalise explicitly on hu-

an body interactions with radio signals in the form of absorption,

eflection, scattering and/or diffraction. These approaches tran-

cend other types of active or device-based passive localisation ap-

roaches in several applications. In smart homes and smart build-

ngs, detection of occupant presence is one key information for

uilding automation services, assisted living services and the likes.

dditionally, accurate occupant locations are important to pro-

ide better building automation services [5] and assist in provid-

ng higher level context information such as occupants’ activities,

estures and identities. Currently, building automation services are

ften only loosely correlated to occupancy information [20] and

an lead to substantial energy wastages in public buildings [21] .

ence, proper exploitation of occupant information has the poten-

ial to decrease energy consumption in buildings ranging from 9%-

0% [5,22–26] IDFL can also provide assistance to the health sec-

or through localisation and activity recognition in areas such as

lderly monitoring [3,4] and fitness tracking [1,2] . Another major

eneficiary is the gaming sector [27] , which is increasingly mov-

ng from game pads to wireless gesture recognition. Intrusion de-

ection [8] , law enforcements such as hostage situations, rescue

issions [28] , and border control [29] are other notable applica-

ions. In all the indicated application scenarios occupants or the

ubjects to be localised are either not committed to carrying a de-

ice although they do not oppose being localised, or are reluctant

o carry radio devices, or might even be hostile to carrying any de-

ice that can localise them which highlights the need of IDFL over

ctive methods [30] . 

Widely used IDFL technologies in the literature can be classi-

ed as being based on radio frequency, optics, sound waves, elec-

rical field or mechanical approaches. We provide a detailed tax-

nomy of those in Fig. 3 arranged according to the operating fre-

uency. Operating in the highest frequency range, optical meth-

ds depend either on visible or infra-red light to locate people.

omputer vision-based localisation is heavily discussed because

f its affordability, high spatial resolution, and the provision of a

arge range of information pertaining to size, shape, colour, and

exture of the objects. However, this technology has drawbacks

ue to wall penetration, smoke, darkness [31] , and privacy issues

32] . In the past few years, infra-red sensors have made much

rogress in capturing human motion. These include proprietary

ystems such as Xbox Kinect [33] and Leap Motion [34] that track

 person’s movement without wearable devices. Due to the opera-

ion in high frequency bands, this technology has two fundamental

imitations: low range and requirement of consistent Line-of-Sight

LoS) connection. Sound source localisation faces challenges mainly

ue to background noise, room reverberation (echoes), and mul-

iple sound sources. Some localisation schemes that use electrical

eld (e.g. floor tiles) and mechanical devices (e.g. pressure sensors)
rovide excellent resolutions for occupant locations. Unfortunately,

hey require heavy investments in infrastructure. For further de-

ails on those technologies we direct the reader to the following

urveys [35,36] . 

Radio Frequency (RF)-based IDFL is the primary focus of this

urvey. RF-based techniques succeed in some key areas where

ther major IDFL technologies falter: walls, obscurity of vision, pri-

acy, range and compensating the accuracy against cost. The most

mportant signal descriptors used by RF-based schemes are Re-

eived Signal Strength (RSS), Channel State Information (CSI), also

ommonly known as channel frequency response, Time of Flight

ToF) and Angle of Arrival (AoA). Due to the diversity of research

n IDFL, we divide the RF-based localisation schemes into two cat-

gories as: Wireless Networks and Radar and provide two separate

axonomies in corresponding sections. These two categories usu-

lly associate different signal processing techniques to infer hu-

an contexts. As indicated by the name, Wireless Networks fuse

ata from multiple nodes in the network for localisation. Available

adar techniques on the other hand are mostly variants of Doppler

adar and they rely mostly on a single transceiver and the signal

rocessing technique to obtain human contexts. 

There are several articles that review RF-based indoor localisa-

ion. However, most existing surveys review either device-based

pproaches in-depth [12,13,37] or include both device-based and

evice-free schemes [10,14,38] together. To the best of our knowl-

dge there is no review that provides an in-depth analysis on

evice-free localisation specialising on RF technologies. Therefore,

n this survey we address this need by providing an in-depth anal-

sis focusing on aspects that are unique to device-free approaches.

hus, the main contributions of this work are threefold: 

(i) We divide the localisation dimensions into occupants, space

and time and analyse techniques, models and algorithms in

the corresponding schemes using these dimensions. 

(ii) We compare different technologies based on their strengths,

weaknesses and intended applications. 

(iii) We also highlight the practical limits of each technology

achieved thus far based on important parameters of the cor-

responding schemes that we consider best. However, cur-

rently, there are no benchmarks or standard parameters to

judge which schemes are the best. Driven mainly by ad-

dressed problems or intended applications, IDFL solutions

adopt different technologies, devices and methodologies. 

Therefore, we use a qualitative approach to compare them. 

The remainder of this paper is organised as follows. Firstly, in

ection 2 we provide a description of the major signal descrip-

ors adopted by IDFL schemes. In Section 3 we divide the locali-

ation dimensions as occupants, space and time and discuss their

ranularities. In Sections 4 and 5 , we review the literature on IDFL

chemes with focus on Wireless Networks and Radar, respectively.

n Section 6 we present a detailed comparison of current localisa-

ion technologies. In Section 7 , we discuss trends, limitations and

ry to indicate future research directions. Finally, in Section 8 the

onclusions are provided. 

. Signal descriptors 

Signal descriptors adopted by the majority of localisation

chemes include RSS and CSI due to ease of accessibility and usage.

dditionally, derived descriptors such as Angle of Arrival (AoA),

ime of Flight (ToF), Doppler shift and less prominently, Packet

oss Rate (PLR) and Link Quality Indiator (LQI) also exist. RSS can

e advantageous for cost effective applications over AoA or ToF

39,40] as they provide reasonable accuracy even with inexpen-

ive hardware. AoA estimation requires multiple antennas and in

act the resolution is determined by the number of antennas at the
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Fig. 2. The distinction between active/device-based passive and device-free passive localisation systems [14] . (a) WiFi access points either measure the received (active) or 

sniffed (device-based passive) packets to infer the target’s position. (b) WiFi devices measure the fluctuation in the signals from nearby devices caused by target obstructions 

to infer human contexts. 

Fig. 3. Device-free taxonomy. The technologies are placed in the increasing order of the operating frequencies. The focus of this survey is highlighted in the green background. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. (a) RSS has the highest temporal correlation with accelerometer readings compared to PLR and LQI, however, the resolution of RSS is limited to 1dB [1] (b) CSI has 

better correlation with accelerometer readings than RSS and has sub-dB resolution [1] (c) Increase in the resolution of RSS to sub-dB by the method introduced in [43] . 
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receiver [41] . Additionally, AoA estimation requires high computa-

tion power for real time performance due to estimation algorithms

like MUSIC [42] that depend on Maximum Likelihood estimation.

In ToF-based solutions (UWB and FMCW) large bandwidth require-

ments in the range of 2GHz for precise delay estimations in in-

door environments set constraints on hardware costs. Doppler shift

occurs only when the reflector is moving relative to the receiver.

Doppler shift alone can not locate the target, but can estimate its

velocity. 

Fig. 4 compares the granularity of different signal descriptors

(RSS, CSI, PLR and LQI) obtained through off-the-shelf devices [1] .

In the experiment accelerometer readings for human respiration
s compared with RSS, CSI, PLR and LQI. As indicated in the fig-

re, RSS fluctuations occur with ± 1dB granularity, thus, minute

ovements of occupants cause either deviations ≥ 1dB or no

hange in RSS at all. However, a single subcarrier in CSI provides

uch higher amplitude resolution in comparison. Consequently,

esearchers have looked at acquiring sub-dB RSS fluctuations from

ommercial Off The Shelf (COTS) devices. Recently Luong et al.

43] demonstrated that using a 100kHz, low power TI CC1200

ransceiver and a processor, an RSS estimate of 0.013dB median er-

or can be achieved as shown in Fig. 4 c. The advantage of this ap-

roach is that they increase the resolution of RSS beyond 1dB gran-

larity using narrowband devices (100kHz) similar to the granular-
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Fig. 5. Localisation resolutions in multiple dimensions proposed in this work. This 

is a refinement of the occupancy resolutions by Melfi et al. [57] . 
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ty of WiFi CSI which requires a bandwidth of 10 MHz to 20 MHz.

owever, this approach needs dedicated hardware like signal

rocessors whereas CSI is easily accessible through commercial

evices. 

.1. RSS or CSI? 

RSS is still preferred in the majority of applications due to its

implicity in measuring it, however, CSI is gaining popularity espe-

ially in presence detection and activity recognition. Wi-Fi devices

perating in IEEE 802.11a/g/n standards use Orthogonal Frequency

ivision Multiplexing (OFDM) as the modulation scheme and send

ata over multiple sub-carriers in a single channel. The receiver

omputes fine-grained physical layer information for each Wi-Fi

acket such as phase and amplitude of the Channel Frequency Re-

ponse (CFR) in the form of CSI. In contrast, RSS only provides an

verage signal strength value for the whole channel. CSI is a good

lternative for RSS not only due to high resolution, it also provides

etailed characteristics of the wireless link in the frequency do-

ain. In the literature, researchers have extracted different features

rom CSI to sense humans e.g. amplitude [44] variation of a sub-

arrier (attenuation in subcarrier amplitudes provide location in-

ormation), multiple subcarrier ampitudes [45] or phases [46] (as

ngerprints), and phase difference of respective subcarriers of two

X antennas [3] . Especially, [3] and [47] report that CSI phase dif-

erence of two RX antennas is a sensitive base signal than ampli-

ude. The reason for their claim is that the phase difference of two

ntennas is a sum of the variations in both antennas. Additionally,

hase randomness (which is explained below) that occur using a

ingle antenna can be eliminated through this. 

With the IEEE 802.11ac standard’s release, CSI-based localisation

an get more accurate and robust with Multiple-Input, Multiple-

utput (MIMO), beamforming and larger bandwidths. In spite of

hat, these methods rely heavily on hardware manufacturers’ ex-

osure of physical layer channel properties to upper layers via

uitable APIs. Currently, CSI is extracted from a limited number

f COTS Wi-Fi chipsets (e.g. Intel Wi-Fi Link 5300 [48] , Atheros

k [49] ) using modified drivers and firmware. These commodity

hipsets exhibit some problems that curtails CSI’s full potential: 

(1) Due to low bandwidth (20MHz and 40MHz of IEEE 802.11n)

and multipath propagation, the channel frequency response

from CSI constructs only a coarse-grained Channel Impulse

Response (CIR) [50] , unlike in ultra-wideband. 

(2) Random packet detection delay, sampling frequency offset

(phase rotation), residual carrier frequency offset inherent in

these chipsets cause random phase variations over succes-

sive received packets [51] . 

There are solutions for lower bandwidth such as switching

hrough multiple channels within the channel coherence time of

he indoor environment [52,53] . However, this may introduce ad-

itional issues with regards to interference to other WiFi devices.

hase randomness can be eliminated to some extent in the form

f a linear transformation (true phase cannot be recovered from

his approach) [51,54] . Nonetheless, recent studies have shown that

here are non-negligible non-linear phase errors (due to IQ imbal-

nce issues in direct down conversion) which cannot be eliminated

hrough this approach [55] . 

Considering these limitations of COTS hardware/WiFi chipsets,

oftware Defined Radio (SDR) implementations of the Wi-Fi phys-

cal layer can be a much better option for CSI-based device-free

ocalisation schemes e.g. [56] . SDRs can eliminate the above short-

omings at a slight expense in complexity and cost. Furthermore,

hey can enhance the capacity and coverage with antenna arrays

aving MIMO capabilities, high bandwidths (in the range of 1GHz)

nd fast signal processing. The ultimate goal of SDR studies is to
dentify a path towards a compact & cost effective system-on-chip

olution. 

. Localisation dimensions 

There is a clear affiliation between IDFL and occupancy detec-

ion. For the proper functioning of an IDFL scheme, detection of

uman presence prior to positioning is an essential requirement.

esides, we can argue that IDFL is just fine grained occupancy

ata. Due to this relationship, we retain the decomposition of oc-

upancy dimensions proposed by Melfi et al. [57] : granularity of

time’, ‘space’, and ‘occupants’ in this survey, but refine them to

ropose the decomposition shown in Fig. 5 for IDFL schemes. The

ime and space dimensions are quite trivial; if a system is capa-

le of providing the occupancy information of precise positions in

space’ in real-time (also called real-time indoor positioning), then

t is also capable of providing the occupancy of rooms, floors or

uildings either in real-time or with a reduced time granularity

epending on the system’s capabilities. In this context, the ‘occu-

ants’ dimension becomes significant, and it can be decomposed

s follows: 

(1) Presence (Is this space occupied?): Information whether a

space is occupied or not is the most primitive form of intel-

ligence provided by IDFL. 

(2) Head counts (How many are there?): Obtaining the number

of people present in a room or a zone can be complicated as

RF-based systems sense humans through signal fluctuations,

and the fluctuations caused by multiple occupants may de-

pend on their motion. Therefore, we see that many systems

focus on obtaining head counts in rooms based on specific

human motion models [58,59] . Occupant presence is a pre-

cursor to head counts. 

(3) Tracks (Where were they before?): This refers to the trace

of where people were before their current position. There-

fore, presence and head counts are precursors to tracking.

However, as described by Teixeira et al. [35] , tracking can be

ambiguous. For instance, the track of people leaving the sys-

tem (e.g. leaving the building) then re-entering the system

(e.g. entering the building again, for instance the next day)

would not have a track over multiple days if identified only

with a temporary and anonymous ID. 

(4) Activity (What are they doing?): The type of activities that

current systems recognise range from full body activities like

walking, jumping, falling, sitting, sleeping etc. as well as ac-

tivities involving parts of the body such as hand gestures,

head movements, mouth gestures etc. One can also argue

that location is a property of the activity, however, in this

survey we have a specific dimension for location as ‘space’. 

(5) Identity (Who are they?): Some systems are able to pro-

vide unique identities for people. This is the case, for in-

stance where a locating system uses RFID in active/device-
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Fig. 6. Wireless networks taxonomy. 
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based approaches. Identity enables non-ambiguous tracking

as people are differentiated by attributing a permanent ID. 

However, constrained by its potential, not every technology may

provide human contexts in granularities in the above order in prac-

tice. As an example, technologies like IEEE 802.15.4 devices (e.g.

TelosB, MICAz motes) or RFID may only address a specific problem

like inferring the position of a person assuming the human pres-

ence as a given. 

With this decomposition of dimensions subsumed under the

term localisation, in the following sections, we analyse schemes

that have had a significant contribution in IDFL. Therefore, we use

the term ‘localisation’ generally to encompass all the above di-

mensions even though we prioritise indoor positioning schemes

in this survey. However, below we also mention presence detec-

tion, counting, tracking or activity recognition solutions that have

models or techniques that can be adaptable to enhance indoor po-

sitioning. Unless otherwise noted, the localisation targets of the

mentioned schemes are humans. 

4. Wireless networks 

Device-free localisation in Wireless Networks is typically referred

to in the literature as RF sensor networks [60] or sensorless sens-

ing [61] . In the following sections, Wireless Networks are further

divided and discussed in terms of RF Tomography, Radio Grids, RF

Fingerprinting and RF Backscatter depending on the technique used

for localisation. Then they are divided into subcategories depend-

ing on the types of technologies that use the corresponding tech-

nique. Fig. 6 illustrates this classification. 

4.1. RF tomography 

This technique estimates changes in the propagation field based

on the mean attenuation or the shadowing in radio links caused by

objects. To compute the attenuation during localisation, an off-line

training phase that is free from humans is a prerequisite. Subse-

quently, a linearised shadowing model constructs an image of this

field or directly provides the object coordinates using particle fil-

ters. The transceivers are arranged as shown in Fig. 7 a to surround

the target to construct its attenuation two dimensionally. Applica-

tions for RF Tomography mainly lie in areas such as intrusion detec-

tion [29,62] , elderly monitoring [31,63] or rescue operations [28] . 

In the literature, the term Radio Tomographic Imaging (RTI)

is used for these approaches, essentially, when an image of the

located object is constructed. If so, a Kalman filter must track

the image which is an additional requirement that may induce

more noise into the position estimation. Wilson and Patwari’s find-

ings [64] that commercial IEEE 802.15.4 transceivers achieve tomo-

graphic imaging similar to Computed Tomography (CT) in medi-

cal applications, provided a breakthrough for research in this area.

RTI requires a large number of radio transceivers around the target

area to obtain a satisfactory resolution. For example, in the work
y Kaltiokallio et al. [6] , cited by Bocca et al. [65] as the most ac-

urate model, 30 nodes were deployed around an area of 70 m 

2 

btaining a mean positioning error of ≈ 30 cm for a single person.

his method utilises the frequency diversity in radio links and the

dea that the spatial impact area of humans varies for each link.

urthermore, they achieve the given positioning error also in chal-

enging environments such as through-wall and cluttered indoor. 

To locate multiple targets in a cluttered indoor area, particle

lter-based tomography approaches have been successful [66,67] .

lthough particle filters provide good accuracy for multiple per-

ons, real-time result acquisition is constrained by processing

equirements. Variance-based Radio Tomographic Imaging (VRTI)

ses temporal RSS variation quantified as variance to track moving

ersons. Wilson and Patwari introduced this method by tracking a

erson with ≈ 45 cm mean error in a 34 node set-up [62] . This ap-

roach has applications mainly in intrusion detection and tracking

obile persons [62] . However, it has issues in locating stationary

ersons. In such cases, signal variation slowly decreases, causing

he object to gradually disappear from the constructed image. This

ethod does not require off-line training and performs better than

hadowing-based RF Tomography in non-LoS conditions. Apart from

he mean and variance of RSS, kernel distance [68] is another com-

only used metric in IDFL [69] . Quantifying the changes in mean,

ariance and other qualities of the RSS distribution in one metric,

t mitigates the shortcomings of stand alone metrics like mean and

ariance and thus, performs better at locating stationary or moving

ersons in LoS and non-LoS conditions [70] . 

In essence, RF Tomography shows promise in positioning and

racking of multiple persons (up to 4), in both LoS and non-LoS.

t also achieves a low error in the sub-meter range using COTS de-

ices. However, it may be impractical for some applications due

o the requirement of high sensor densities in small areas. Fur-

hermore, as the tracked object needs to be surrounded by the

ransceivers at a height of ≈ 1 m above the ground to obtain

he object’s attenuation image, this sets constraints on transceiver

lacement. 

.2. Radio Grids 

The distinguishing feature about Radio Grids from other ap-

roaches is that they utilise models to characterise signal strength

uctuations in multiple links to detect an object’s presence or po-

ition in the target area. Transceivers are merely arranged in grids

o extend the target area. These methods largely rely upon a train-

ng phase to calibrate the model parameters such as node posi-

ions and signal strengths of the links for the unoccupied envi-

onment and an online phase to perform the actual localisation.

elow we analyse these approaches categorised based on the as-

ociated technologies: IEEE 802.15.4 compliant devices, WiFi, RFID

nd ultra-wideband. 
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Fig. 7. Placement of transceivers in RTI, Radio grids and RF Fingerprinting. RTI and Radio Grids using TelosB motes have restrictions on transceiver placement. WiFi can 

afford less transceivers than TelosB motes. 
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Table 1 

Different applications of CSI-based human sensing. The applica- 

tions are divided as primary and secondary because outputs of 

secondary applications are inferred from outputs of at least one 

primary application. 

Application Reference 

Primary Presence detection [45,80–83] 

Respiration monitoring [76–79] 

People counting [58] 

Walking Speed estimation [84,85] 

Walking direction estimation [86] 

Imaging of humans and objects [87] 

Secondary Location [44,45,88] 

Activity recognition [7,89–91] 

Fall detection [3] 

Smoking detection [92] 

Sleep monitoring [1,93] 

Gesture recognition [94–97] 

User Identification [98,99] 
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.2.1. IEEE 802.15.4 compliant devices 

In these approaches, low power TelosB motes are generally de-

loyed. Due to the low transmit powers ( < 1dBm) and low band-

idth (2 MHz), these techniques usually associate with large grids

o achieve reliability and long range. The seminal work on this was

one by Zhang et al. [74] . They deployed a radio grid on the ceil-

ng as depicted in Fig. 7 c and observed that links which are most

nfluenced by a person tend to be closely grouped. Furthermore,

hey reported that the highest fluctuations in RSS due to a per-

on’s movement occur along the link line and a line perpendic-

lar to the link around its midpoint. Based on the observations,

hey developed a model for signal dynamics and located a per-

on with three different algorithms: midpoint, intersection and best

over , whereby centre points, intersection points or rectangular ar-

as of the influenced links were computed to estimate the object

osition in the corresponding algorithm. In a 108 m 

2 empty room

ith a 4 × 4 sensor grid placed on the ceiling, they report aver-

ge errors of ≈ 0.7 m for a single person and ≈ 1.8 m for two

ersons. 

To locate two persons at least 5 m apart, these algorithms were

urther improved by dynamically clustering the influenced nodes

ith an error of ≈ 1 m [71] . By allocating different frequencies to

ifferent node clusters minimizing interference among neighbour-

ng nodes, a lower error and a lower latency was achieved albeit a

elatively higher node density (23 TelosB motes in a 64 m 

2 area)

75] . In this method, two mobile persons who are at least 2 m

part were tracked and the experiments were conducted in a non-

luttered environment. However, the performance of this approach

n a realistic indoor environment with furniture, computers, and

etallic objects which will greatly impact the multi-path effects

r, increasing number of people, moving objects which will inter-

ere with the characterisation of the empty space remains largely

nexplored. 

l  

n  
.2.2. Wi-Fi 

Unlike TelosB motes, Wi-Fi offers both RSS and CSI signal de-

criptors. Initial WiFi based approaches adopted RSS fingerprinting

or localisation. However, recent Wi-Fi IDFL solutions with model-

ased approaches have involved CSI instead of RSS mainly. There-

ore, in this section we discuss CSI-based COTS and SDR solutions

nd discuss WiFi RSS-based approaches in Section 4.3 . 

Sen et al. [54] introduced the usage of CSI in COTS Wi-Fi de-

ices and demonstrated that aggregation of channel frequency re-

ponse across several OFDM sub-carriers provides location finger-

rints. Since then, due to the versatility and finer granularity of

SI, a profusion of IDFL applications have materialised, Table 1

rovides a summary of them. Initially, the applications were just

imited to motion detection, location inference and activity recog-

ition, however, recently the research has branched out to many



86 S. Palipana et al. / Ad Hoc Networks 64 (2017) 80–98 

Fig. 8. The use of Fresnal zones to model the LoS effects in [44] . 
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other areas as indicated in the table. Currently, stationary person

detection using CSI is a trending topic due to CSI’s high resolution.

People have looked into this problem either as breathing detection

[76–79] or efficient extraction of features to effectively isolate un-

occupied environment from the occupied [80] . 

The absence of an analytical model to map the impact of hu-

mans on CSI obtained through commodity chip-sets has been a

long standing issue. The reason is partly due to the randomness

in phase. Depatla et al. [59] use a statistical model on RSS to esti-

mate the number of people in a target area. They also claim that

the model has potential to model CSI amplitudes. They separate

the effect of a person on the WiFi signal into: blocking the LoS

as well as nLoS scattering, therefore, the received signal, h can be

expressed as follows: 

h = a 0 e 
jφ0 + 

N ∑ 

i =1 

b i e 
jψ i (1)

where a 0 and φ0 represent the resultant amplitude and phase of

the combined effects of LoS component (taking into consideration

the blocking of LoS by humans) and multipath components due

to static objects, and b i and ψ i indicate the multipath components

due to walking people. They characterise a 0 probabilistically by de-

veloping a human motion model, the distribution of b i is repre-

sented by K-distribution (widely used to model sea clutter when

the scatterers are low) and all the phases are assumed to be uni-

formly distributed (due to operation in a high frequency). Accord-

ingly, they obtain the probability distribution function (PDF) of h

and use Kullback Leibler divergence to measure the distance be-

tween the PDF of h and the distribution of measured received sig-

nal to predict the total number of people. They estimate up to 9

people in a 33 m 

2 area and the error is 2 or less 63% of time. 

More recently, CARM [91] characterised human speeds on CSI

subcarrier amplitudes and extended this to an activity model.

Thereby, CARM built an environment independent activity recogni-

tion scheme and achieved more than 80% accuracy in classifying

eight activities. Since then, a variety of models characterising CSI

amplitude due to human presence have emerged [44,79,80] . How-

ever, the basis of all these models is to model subcarrier ampli-

tude by isolating static paths due to scattering and reflection off

stationary objects from dynamic paths caused by human interven-

tion. Among these models, LiFS [44] stands out due to the fact that

it models subcarrier amplitude variation when the link experiences

LoS shadowing by a human, whereas, other models handled only

the fading caused by nLoS movement. LiFS addresses this by divid-

ing the space surrounding the link into three zones: LoS, nLoS First

Freznel Zone (FFZ) and outside of FFZ as shown in Fig. 8 . Charac-

terisation of CSI amplitude, H in LiFS is as follows: 

H = 

⎧ ⎨ 

⎩ 

L + D t + A t if LoS ( 2 )

L + D t + η if nLoS and in FFZ ( 3 )

L + η if outside of FFZ ( 4 )
here L is propagation loss, D t is diffraction fading, A t is target

bsorption attenuation and η is measurement noise. Using this

odel, LiFS obtains an effective value for CSI amplitudes which de-

ends on object positions by filtering out subcarriers that do not

onform with the model. This approach is able to locate a human

ithout offline training with .5 m median error in LoS and 1.1m

LoS. 

In addition to deriving the distance of a target using the atten-

ation of CSI subcarriers, AoA information can also be used. Due to

ifferent ToFs of different signal paths, incoming signals encounter

aried phases in different antennas as well as among subcarriers

f the same antenna. MaTrack [100] exploits this fact to derive

he AoA information using a modified MUltiple Signal Classification

MUSIC) [42] (MUSIC algorithm is widely used to estimate the AoA

rom received signals using multiple antennas) algorithm on each

eceiver and thereby, uses triangulation to locate a human. As Ma-

rack leverages the incoherency of the reflected path from human

ompared to the direct path, it does not require offline training to

ocate the human and achieves .6 m median location error in a ≈
0 m 

2 uncluttered area. However, when the person is static, it ex-

eriences lower detection rates due to low incoherency of reflected

aths. 

Compared to COTS chipsets-based solutions, SDRs offer the abil-

ty of CSI amplitude and phase to be incorporated in fine-grained

oA and ToF measurements. Using SDRs, Doppler shift of a signal

aused by human movements can be easily extracted. Doppler shift

aused by human movements is only a few Hertz, whereas, the fre-

uency offset between a transceiver and a receiver of a commod-

ty WiFi chipset is few hundred Hertz causing the Doppler shift

o be hidden in phase randomness. Additionally, packet detection

as to be conducted in nanosecond rates which is impossible with

ommodity chipsets. SDRs mitigate these issues by precise TX-RX

ynchronisation and high speed signal processing using FPGAs. Pu

t al. [56] developed a prototype using USRP-N210 software radios

or gesture recognition in indoor environments. They were able to

lassify nine gestures with a 94% accuracy by capturing Doppler

hifts having a resolution of a few Hertz. [101] used a device-free

uman motion detection method using Doppler shift and located

he position by measuring the AoA using directional antennas. 

However, it must be highlighted that CSI-based IDFL is still

volving compared to its active localisation (targets carry devices

hat cooperate with infrastructure to localise) counterpart. Exam-

les of advanced active localisation systems include ArrayTrack

102] , which locates 41 users in an office environment to within

 23 cm median error, CUPID [103] , which locates an object using

ust one access point with 5m median error and iLocScan [104] ,

hich simultaneously locates a target and maps the area as it

oves. All these methods used SDRs as the main hardware for lo-

alisation. More recently SpotFi [52] achieved an accuracy of 40 cm

sing only commodity WiFi devices, a performance comparable to

hat of ArrayTrack. 
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.3. RF fingerprinting 

In fingerprinting, a radio map must be initially constructed off-

ine by placing a person at predetermined positions in the area of

nterest. During the on-line phase, collected RSS values are com-

ared with the fingerprint, and the corresponding position is in-

erred. Applications of this approach are mainly elderly health care,

ome security and energy management in buildings [72] . 

.3.1. RSS 

Among RSS based approaches, Youssef et al. [105] introduced

he first fingerprinting IDFL scheme using COTS Wi-Fi transceivers.

hey detected a mobile person with moving RSS average and mov-

ng RSS variance, and tracked them using a Bayesian inversion

ased inference approach. This approach was further enhanced by

osba et al. [106] to track a person in a real indoor setting. They

lso compared different Access Point (AP) configurations to en-

ance the overall performance. Nuzzer [73] leveraged single person

racking into multi-person tracking by dividing a large area into

ultiple zones either as actual rooms or small areas separated by

adio links. It located a person with less than 2m positioning error

n a real environment using five 802.11b Wi-Fi devices in a 130 m 

2 

rea. SCPL [72] used a successive cancellation method to detect and

ocate multiple persons where the impact of the first detected ob-

ect is subtracted from the overall RSS. It detected four people in

n office cubicle area (150 m 

2 ) and an open floor area (400 m 

2 )

sing 20–22 Chipcon CC1100 radio transceivers with a mean posi-

ioning error of 1.3m for both areas. 

More recently, ACE [107] tried to address the exponential

rowth of localisation complexity with increasing number of peo-

le in fingerprinting. They used a cross-calibration approach to

inimise the calibration overhead of multiple entities to a linear

omplexity. They recorded median location errors of 1.33m and

.43m for a single person, 2.11m and 1.44m for three persons in

40 m 

2 and 130 m 

2 areas, respectively. 

.3.2. CSI 

The goal of initial CSI based fingerprinting approaches was

o distinguish human motion from the unoccupied environment.

 common intuition among these methods is that the affected

ulti-paths due to human motion would reduce the similarity

etween CSI measurements of unoccupied and occupied environ-

ents. Therefore, a distance measure between a fingerprint of an

noccupied room CSI batch and CSI measurements obtained dur-

ng human motion is used as an indicator of human presence. As

he structure of CSI is high dimensional compared to RSS, various

istance measures have been proposed. Pilot [45] used cross cor-

elation as the distance measure, [108] extended it to an adaptive

ethod that automatically adjusts the threshold depending on the

nvironment. Xiao et al. [109] used grey relational analysis to mea-

ure the distance. Omni-PHD [82,110] used a statistical approach

nd its fingerprint is a histogram of CSI amplitudes. They used

arth Mover’s distance [111] to measure the distance between un- 

ccupied and occupied histograms. Even though they all tend to

ave detection rates in the range of 90% in unique environments, a

ystematic comparison of their capabilities are non-existent. Pilot

45] in particular, is a prominent fingerprinting approach that uses

SI for locating people as well. It uses CSI amplitude to generate

ngerprints. Once an occupant is detected, it uses kernel density

ased maximum a priori estimation algorithm to estimate the oc-

upant position taking raw CSI values as fingerprints. Compared to

SS-based fingerprinting approaches like Nuzzer [73] which was

entioned above, Pilot can achieve upto 10% increase in accuracy

or locating a single person. 
.3.3. Ambient field sensing 

Ambient field sensing systems do not have dedicated transmit-

ers. Instead, they sense the ambient field or the already available

ignal in a wide range of frequencies (e.g. FM band) using SDRs

r other dedicated receivers. They typically infer the object pres-

nce and the position with fingerprinting methods. Therefore, we

nclude ambient field sensing methods as a sub category of finger-

rinting approaches. 

An initial feasibility study of an ambient FM sensing scheme

n a domestic environment was conducted by Popleteev [112] .

y sniffing 200kHz channels in the 87MHz–111MHz band using

DRs, the study identified a correspondence between distinct sub-

ect positions and unique signal strength patterns in the FM spec-

rum. Based on this observation, the position of an individual was

btained using a k-Nearest Neighbour (kNN) classification. Later,

opleteev and Engel [113] enhanced this to a fine-grained local-

sation scheme. They achieved a sub-meter level upper bound for

0% errors locating one person in a 18 m 

2 room. However, they ob-

erved an increase in the error over time, particularly, within five

ays the error increased by ≈ 1m. Shi and Sigg [114] demonstrated

he feasibility of simultaneous human localisation and activity clas-

ification using ambient field sensing. They used two SDRs, sepa-

ated by 4m, for a rather small, 2 m 

2 area. They distinguished three

ctivities at two different positions using Naive Bayes, kNN and de-

ision tree based methods, and report an activity classification ac-

uracy of more than 70%. Later, they enhanced this to recognise

ve acti vities including empty, walking, lying, crawling or standing

115] . However, they report that best classification accuracies occur

hen the activity is conducted within .5m–1m from the receiver. 

.4. RF backscatter 

Backscattering, the reflection of signals back to where they orig-

nated has similarities to the flashing effect in photography or

eather radars. It has recently been deployed for IDFL as well in

hich the wireless transmitter acts as the light source. 

.4.1. Wi-Fi-based 

WiDeo [116] extended backscatter measuring to Wi-Fi devices.

n WiDeo, wireless transmissions of the Wi-Fi AP is the equivalent

f light source and the reflection of this back at the AP (backscat-

er sensor) is equivalent to the motion tracing camera. Fig. 9 a illus-

rates this. The backscatter sensor distinguishes objects using three

eatures of the reflected RF signal: amplitude, ToF and AoA. The

uthors built a prototype based on this principle. WiDeo consists

f SDRs [118] mimicking the functionality of Wi-Fi APs having a

andwidth of 20MHz at 2.4GHz. Each AP is attached to four an-

ennas enabling MIMO capabilities which helps with ToF and AoA

omputations. The authors mention that this system can trace up

o five motions concurrently with a mean error of 12 cm. The im-

ressive fact in this work is the low error achieved in a relatively

ower bandwidth scenario compared to other fine-grained motion

racking schemes. 

.4.2. RFID-based 

Unlike in active RFID localisation, device-free schemes attach

FID tags to static objects of the target area. When an RFID tag

eceives a signal from a reader scattered by a moving object, it re-

ects a modulated RF signal indicating either occupant presence or

bsence which can be considered as a backscatter signal. Here, the

uman presence influences both the forward and backward waves.

ig. 9 compares this to WiFi backscatter localisation. The commu-

ication range of RFID technology has currently increased up to

rders of 10m. It is also reported that major manufacturers are try-

ng to increase this range further [119] by increasing the sensitivity
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Fig. 9. (a) Wi-Fi AP acting as a light source and a backscatter sensor for through-wall motion detection in WiDeo [116] (b) When an RFID tag receives a signal from a reader 

scattered by a moving object, it reflects a modulated RF signal indicating either occupant presence or absence [117] . 

Fig. 10. RFID readers infer the direction of the person through the power decrease in the paths of respective directions [119] . 
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of the RFID readers and high transmit powers ( ≈ 30dBm) which

might further encourage RFID-based IDFL effort s. 

TagTrack [120] leveraged this idea to measure the RSS fluctua-

tions caused by humans. It located and tracked a person by Hid-

den Markov Model (HMM)-based statistical methods and achieved

a 7 m mean tracking error and a tracking accuracy of 98% in a

3.2 × 4.8 m area. 

Tadar [117] used RF-backscatter for through-wall localisation of

moving humans. In this scheme, the reader is the equivalent of the

light source while the RFID tags form a virtual antenna array and

function as the backscatter sensor. Fig. 9 b shows this behaviour in

a through-wall scenario. The RFID tags were deployed on the same

side as the reader. The authors required a high-gain directional an-

tenna to recover the weak through-wall reflections. The flash effect

(strong reflection off the wall, 5 inch hollow wall and an 8 inch

concrete wall) was removed by subtracting the learned signals of

the empty room by assuming a linear channel. They modelled ob-

ject motions using an HMM, whereby the object trajectory was ob-

tained through the Viterbi algorithm and report impressive median

tracking errors of 7.8 cm and 20 cm in X and Y dimensions. They

required 45 RFID tags and a reader for a 7 ×4 m area. The tags

were placed inside a 61 × 43 × 33 cm box with a 5 cm separation

and they basically function as an antenna array. This way the de-

ployment overhead can be reduced as well. 

D-Watch [119] used the backscatter technique to obtain AoA

information to locate an object using commodity tags and read-

ers. This technique requires at least two readers and multiple tags

( < 50) to successfully locate an object. D-Watch RFID readers iden-

tify the angle of the human from the power drop at the respective

direction due to shadowing of the path between the reader and the

tag, whereby, triangulation infers the human position. Fig. 10 a and

b illustrate this. To identify the power drop in a particular angle,

D-watch uses a modified version of the MUSIC algorithm. One key

difference of this approach is that it does not require the positions

of the tags in advance to locate a person which reduces deploy-

ment overheads. However, to rectify the random phase offsets in-
roduced by the commodity tags, D-Watch requires deployment of

ome tags with known direct path angles. In rich multipath envi-

onments (70 m 

2 ) it can track a human with 16.5 cm median error.

.4.3. Ultra-wideband (UWB) 

UWB transceivers have the luxury of a much larger band-

idth than many other technologies. Consequently, they obtain a

ore precise channel impulse response which is helpful in nar-

owing down the target’s range. Hence, UWB ToF-based localisa-

ion is more popular than inaccurate RSS measurements or AoA-

ased methods that require large antenna arrays. However, UWB

ransceivers are more suitable for short range applications as they

end low-energy impulses. 

In early work, detection of human presence by ultra-wideband

adios was implemented through breathing detection. Yarovoy

t al. [121] demonstrated in a laboratory setting that human de-

ection through breathing/motion can be accomplished using UWB

n the 1GHz–12GHz band. Chang et al. [122] detected human pres-

nce in a dynamic outdoor environment, then extended this to a

anging and tracking system of up to two people [123] and then

rovided insights on how to distinguish humans from other mov-

ng objects [124] . 

More recently, Kilic et al. [125] produced preliminary work on

 device-free person detection and ranging method that avoids the

eed for calibration. It utilises low-frequency signal variations in-

uced by human presence which is more conspicuous than back-

round noise. Using a likelihood ratio between the received signal

ower and the signal power without the human reflection compo-

ent, they have captured a test statistic. An occupant is detected if

he test statistic exceeds a predetermined threshold. This was later

eveloped to locate an object position with an error in the range of

2 cm–180 cm using four UWB radios in a 15 m 

2 area [126] . Since

he radio nodes are hung from the ceiling, this approach is scalable

o large spaces. 
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Fig. 11. Radar taxonomy. 

4

 

t  

m  

o  

b  

5

 

8  

m  

t  

d  

o  

m  

a  

o  

s  

t  

t  

a  

8  

e  

d  

p  

p

5

 

n  

i  

p  

l

 

n  

e  

W  

(  

t

 

g  

m  

r  

b  

t  

[  

d

5

 

a  

t  

c  

i  

n  

c  

r  

w  

m  

D  

r  

c  

f  

a

 

p  

fl  

d  

r  

n  

t  

b  

r  

t

1  

i  

t

 

t  

i  

t  

w  

W  

g  

c  

t  

c  

1  

r  

m  

q  

e  

j  

w  

i  

b  

o

 

i  

F  

u  

m  

C  

i  

m

a

 

s  

i  

t  

a  

f  

r  

f

5

 

g  
.4.4. Millimeter wave radios 

Wireless signals cannot easily penetrate objects that are larger

han their wavelengths, thus, reducing the wavelength induces

ore reflections. This principal can be leveraged to locate smaller

bjects like pens in very short ranges ( ≈ 1 m) which can not easily

e located by conventional technologies that use either 2.4 GHz or

 GHz industrial, scientific and medical (ISM) bands. 

mTrack [127] uses 60 GHz radios that are standardized as IEEE

02.11ad for this purpose. 802.11ad standard permits the use of

ultiple antenna elements to produce highly directional beams

hat can be steered electronically. Lower wavelengths and highly

irectional antennas produce high sensitivity to small changes in

bject position. mTrack uses both RSS and phase (relative to trans-

itter) to locate and track an object. It is implemented on SDRs

nd requires one 60 GHz transmitter and two receivers. When an

bject moves in the target area, the path length of the reflected

ignal varies altering the signal’s phase. By measuring the direc-

ion of reflected signals, each receiver estimates the object’s rela-

ive angle, thereby, locating the object. Due to short wavelengths

nd steerable antennas, mTrack can achieve location errors upto

 mm, however, its range is limited to just 1m due to high op-

rational frequencies. Therefore, mTrack can locate only miniature

evices like pens. The authors report that this technology has ap-

lications in areas such as wireless transcription and virtual track-

ad (virtual user interface). 

. Radar 

There has been major interest recently in the research commu-

ities to leverage radar techniques for IDFL. The main driver is the

nvolvement of SDRs in radar localisation, replacing dedicated or

roprietary hardware. We divide the existing radar localisation so-

utions as active and passive radars. 

Active radars are the traditional radars where a radio sig-

al is emitted from a transmitter and reflects back towards the

mitter location. We divide active radars further into Continuous-

ave (CW), Dual-Frequency CW (DFCW), Frequency-Modulated CW

FMCW), Stepped-Frequency CW (SFCW) , and Inverse Synthetic Aper-

ure Radar (ISAR) . 

A passive radar system relies on the illumination of the tar-

et from a signal emitted by a non-cooperative/non-radar trans-

itter to detect and localize the target. These systems exploit a

ange of transmission sources including Global System for Mo-

ile (GSM) [128–130] , Long Term Evolution (LTE) [131,132] , Digi-

al Video Broadcasting (DVB) [132,133] , Frequency Modulated (FM)

134] and WiFi [135–139] . Fig. 11 illustrates the radar taxonomy

epicted in the survey. 

.1. Active radar solutions 

CW radar is the traditional Doppler radar and it is also known

s Interferometry Radar . The transmitter and receiver in these sys-

ems are physically separated because they have to function con-

urrently, however, they are almost collocated, typically assembled
n a single system. It measures the Doppler shift of reflected sig-

als, whereby objects with regular motion or moving parts that

ause micro-Doppler motions are detected [140] . CW Radars expe-

ience range ambiguities due to range dependence on signal phase

hich is modulo 2 π , hence, these radars are primarily used for hu-

an presence detection using vital signs such as heartbeats [141] .

ual offbeat carrier frequencies of DFCW Radars eliminates the

ange ambiguity in CW Radar . Amin et al. [142] demonstrated its

apabilities of detection and range estimation of targets for carrier

requencies 906.36 MHz and 919.82 MHz in an anechoic chamber

nd a through-wall setting. 

FMCW which is another variant of CW radar estimates object

ositions by mixing a transmitted frequency chirp with the re-

ected wave to produce a beat signal. The instantaneous frequency

ifference between the two waves is proportional to the object

ange. This is a widely researched area among Doppler radar tech-

iques. Consequently, it has made much progress in areas related

o smart homes such as presence detection from vital signs (heart

eat and breathing) [4,143] multi-target localisation [8] , gesture

ecognition and human identification [144] . Other major applica-

ions of FMCW research include automotive radar systems [145–

47] range and velocity detection [148] , imaging of humans [144] ,

ndoor positioning for gesture recognition [27] , and intrusion de-

ection and rescue operations [8] . 

A common limitation among most RF-based localisation sys-

ems is the identification of users through walls and occlusion. Us-

ng an SDR-based FMCW Radar , WiTrack [27] attempted to solve

his, and managed to locate a human in three dimensional space

ith a mean error in the range of two decimetres. Particularly,

iTrack is capable of through-wall localisation, fall detection, and

esture recognition of a single person. The radar consisted of a

ustom made RF front-end with three receiver antennas and one

ransmitter antenna. In WiTrack2.0 [8] , this was extended to lo-

ate up to five stationary or mobile persons simultaneously, and a

1.7 cm median error was achieved. As the number of transmitter-

eceiver antenna pairs were dependant on the number of users,

ultipath effect and noise in the environment, WiTrack2.0 re-

uired five antenna pairs to locate five users, although multipath

ffect and interference among multiple antennas were two ma-

or issues. To counter this, multi-shift FMCW was introduced in

hich each antenna transmits with a specific delay (maximum ToF

n the target environment) to the preceding antenna. Fig. 12 a and

 illustrate the difference between FMCW and Multi-shift FMCW

peration. 

Wang et al. [149] tackled the problem of simultaneous local-

sation of stationary and moving objects by developing a hybrid

MCW-CW radar technique. This radar system is able to contin-

ously alternate between the FMCW mode and the interferometry

ode as both modes of operation can share the same RF front-end.

onsequently, this system is capable of both life activity monitor-

ng and localisation, and creates a 360 ° view of the indoor environ-

ent. The authors report a maximum error of 10 cm in a ≈ 60 m 

2 

rea. 

Similar to FMCW Radar, SFCW Radar provides both range and

peed characteristics of a mobile target. As indicated in Fig. 12 c,

t retains a stepwise increase in frequency over time. Object de-

ection and speed estimation is performed using the Doppler shift

s in CW Radar while range is estimated based on the time dif-

erence of transmitted and received signals. However, this radar is

arely used in indoor localisation and generally, applications have

ocused on fall detection [150] and health monitoring [151] . 

.2. Passive radar solutions 

As passive radar systems rely on the already deployed technolo-

ies for sources of illumination, they are low cost solutions for ex-
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Fig. 12. (a) Antenna 2 in FMCW transmits when the full echo of antenna 1 is received, (b) Antenna 2 in Multi-shift FMCW may transmit before the full echo of antenna 1 

is received depending on the ToF of the room (c) Stepwise transmissions in an SFCW radar. 
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isting active radar techniques. As the transmitter of opportunity

and the radar receiver are physically separated, these radars have

either bistatic or multistatic structures. Among existing works, pas-

sive radar systems exploiting WiFi signals are popular for indoor

localisation because WiFi is ubiquitous in indoors and has reason-

able bandwidth for range resolution [152] . As these systems rely

on external sources of illumination such as WiFi, they are linked

to both wireless networks and radars. 

Recent passive radar deployments have focused on SDR archi-

tectures which provide a more flexible software based approach for

radio design. They provide several advantages compared to conven-

tional radar systems which include rapid prototyping and facilitat-

ing quick reconfiguration of different bands and parameters [139] .

However, a main drawback of passive radars, which is not limited

to just WiFi is that reflections off a target can be overpowered from

the strong signal directly received from the transmitter of oppor-

tunity. Nonetheless, proper processing techniques, e.g. CLEAN algo-

rithm [135,139] , have enabled interference cancellation for target

detection and localisation amid adversities even in indoors [137] .

Consequently, a range of solutions targeting different applications

have emerged including security and surveillance [135,139] , track-

ing humans, man made objects and vehicles [136,138,153] . Inter-

estingly, Wi-Vi [154] leveraged passive bi-static radar to track and

recognise gestures using an ISAR in a through-wall setting. This

technique significantly reduces the number of antennas by using

the target’s movement to emulate an antenna array. 

6. Qualitative comparison of different schemes 

In this section we first provide a concise summary of different

categories of localisation technologies in general and compare their

strengths and weaknesses in Table 2 . We also illustrate the type

of applications each technology targets, in conjunction with the

corresponding publication. An important observation we made re-

garding technologies such as RF tomography, radio grids, RF finger-

printing, and radar to some extent is that they all target similar ap-

plications. Therefore the usability mainly depends on the strengths,

weaknesses and the limitations of each technology. 

Motivated by this, for each technology, we chose the publica-

tions that we perceived as the best considering properties that

are important and consistent in all the solutions. The intuition is

that by comparing the best solutions we can get an indication of

the boundaries of the respective technology in practice. The prop-

erties were selected to include the dimensions (time, space and

occupants) that illustrate the resolutions that were highlighted in

Section 1 as well. The selected properties are as follows: 

• Location error. 

• Maximum no. of people simultaneously located. 

• Number of devices required. 

• Area size. 

• Hardware cost. 

• Calibration efforts. 
• Scalability. 

• Latency. 

In Table 3 , we compare the selected solutions. An adversity that

e encountered during the comparison, however, is the lack of

tandard evaluation parameters and environments used within the

esearch community. Most experiments were conducted in custom,

ontrolled environments. For example in Table 3 we observe that, 

(1) Authors provide the accuracy as either mean, median, min,

max or root mean square error where each metric has its

own pros and cons but does not necessarily convey the full

picture of the experiment. 

(2) The environment that the experiments were carried out

(LoS/nLoS, cluttered/uncluttered) has a major impact on the

accuracy. 

(3) The compared schemes are across different fields and the ac-

curacies may depend on the intended applications. 

The performances of the schemes cannot be compared based

n the numbers alone without standard metrics or settings, thus,

e resort to a qualitative approach based on a three level scale.

ccordingly, the table cells are coloured in three hues green, yellow

nd red to highlight strong, moderate and weak characteristics of

he chosen schemes. 

From Table 3 it can be observed that among existing technolo-

ies for human positioning, the systems that have least weaknesses

re those that are based on Wi-Fi CSI and FMCW radar. However,

he scalability of FMCW radar for large indoor environments (for

ome applications that are advertised such as elderly monitoring,

ppliance controlling and intrusion detection) is questionable due

o hardware costs, large bandwidths and increase in antenna array

ize with the number of people (this leads to space constraints).

nless a compact SoC solution is developed, the hardware costs

ill be a challenge. On another perspective, radar technology has

ome critical challenges that has made this technology inaccessible

or much of the research community: (i) requirement for special

xpertise e.g. antenna, RF front end design, (ii) the unavailability

f standard system-on-chip solutions, (iii) the extensive signal pro-

essing phase to extract features, and (iv) hardware cost. However,

t must also be highlighted that with the advent of software de-

ned radios this issue has resolved to some extent. 

In contrast, Radio grids and RF tomography have been tested in

ractical indoor environments (with large area sizes) with good ac-

uracies. These technologies benefit from commercial devices and

he signal descriptors are easily accessible (RSS and CSI), thus, re-

earchers can focus on the problem itself. Especially, the low power

elosB motes can be deployed in large numbers to extend the

ange, whereas, WiFi is ubiquitous. Additionally, the introduction

f fine grained CSI has reduced the number of devices significantly.

It is also noticeable that Ambient FM and UWB are the least de-

eloped among the compared with respect to the intended appli-

ations. Ambient FM is mainly constrained by not relying on dedi-

ated transmitters, where the ambience is susceptible to change. It

s evident that Ambient Field Sensing is at an early stage compared
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Table 2 

Strengths, weaknesses and targeted applications of respective technologies. 

Technology TX-RX Strengths Weaknesses Targeted applications 

RF tomography IEEE 802.15.4 

(RSS) 

RSS is readily available, can use 

commercial hardware, 

existence of accurate models 

for. 

High density of TX-RXs ⇒ cost & 

deployment effort s, low granularity 

of RSS ⇒ low resolution, TX-RX 

placement. 

Intrusion detection, elderly care [31,63] , 

rescue missions [155] , border control 

[156] . 

Radio grids IEEE 802.15.4 

(RSS) 

RSS is readily available, 

commercial hardware. 

Low granularity of RSS, low model 

accuracies, high density of TX-RXs, 

TX-RX placement. 

Intrusion detection & elderly care [157] . 

IEEE 802.11n 

(CSI) 

Commercial hardware, diversity 

of CSI streams, fine grained 

than RSS, WiFi is ubiquitous, 

long range than TelosBs. 

Phase randomness, modifications to 

driver and firmware. 

Elderly monitoring [3,44] , vital sign 

monitoring (sleep apnea [1] , 

respiration), intrusion detection, 

analysing shoppers behaviour [7] , 

smoking detection [92] , speech 

recognition [158] , gesture recognition 

[94–97] , occupancy detection 

[76–81,83] and people counting [58] . 

RF Fingerprint- 

ing 

IEEE 802.11& 

802.15.4 (RSS, 

CSI) 

Commercial hardware, ubiquity 

of WiFi. 

Calibration & training overheads. Intrusion detection, border protection, 

low-cost surveillance, smart homes 

automation [159,160] , building 

occupancy statistics [160]. 

RF backscatter RFID readers 

and tags 

(RSS) 

Commercial hardware, high 

spatial resolution due to high 

density of tags, range (10m), 

low training overhead. 

High cost of RFID readers ( € 40 0-20 0 0), 

deployment effort s of multiple t ags. 

Virtual touch screen [119] , as elderly 

people surveillance [117] , intruder 

detection [117] , gesture recognition 

[117] . 

Ultra wideband FCC-compliant 

UWB radios 

High ranging resolution, high 

level of multipath resolution, 

obstacle penetration, low 

training overhead, fast 

processing. 

Hardware cost ( ≈ € 10 0 0), low range, 

hardware and antenna design. 

Vital sign monitoring [126] , rescue 

operations [155] . 

Millimeter 

wave radio 

SDR Commercial hardware, high 

accuracy (sub mm). 

Very low range (1m), hardware cost, Wireless transcription [127] , virtual 

trackpad [127] . 

Radar CW (SDR) High precision in relative 

displacement measurement. 

Hardware cost ( ≈ € 20 0 0), a single 

radar cannot detect range, antenna 

and RF front end design. 

Vital sign monitoring (respiration) [143] , 

gesture recognition [149] . 

FMCW (SDR) High spatial resolution, 

accuracy (dm level), high 

range (10m), fast signal 

processing. 

Hardware cost ( ≈ € 20 0 0), antenna and 

RF front end design. 

Elderly monitoring [27] , vital sign 

monitoring (breathing, heart rate) 

[4] , gaming [8] , virtual reality [8] , 

rescue missions [8] , intrusion 

detection, controlling appliances 

[8,144] . 
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o other areas. It is also understandable that there are many chal-

enges in Ambient Field Sensing , including extensive fingerprinting,

oarse-grained and fast deterioration of the fingerprint. 

. Trends, future research directions, challenges and limitations

In this section, we discuss some of the important observations

e made during the review of the state of the art. The research

e studied are the quintessential of the current generation of IDFL

chemes. Section 7.1 summarises the trends and future research

irections observed among these schemes and Section 7.2 sum-

arises the existing challenges and limitations among them. 

.1. Trends and future research directions 

(i) Robustness under environmental irregularities. Localisa- 

tion techniques are generally calibrated and tested under a

particular environment setting. Sudden changes in the en-

vironment such as furniture alterations can change the in-

door radio channel and thereby impact the overall accuracy.

However, we are beginning to see effort s on eliminating en-

vironmental effects by characterising the rate of path length

changes to human motion [91] and Doppler shifts [56] par-

ticularly in activity recognition. 

Another aspect is the output of these systems under the in-

fluence of domestic pets and other natural disruptions. To

the best of our knowledge, there has not been any study

on the impact of pets on the accuracy of RF localisation

techniques. 
(ii) Drive for errors below decimetre levels. A notable trend

particularly among radar-based localisation is the drive for

low positioning errors [8,27,116,117] . Notwithstanding the

fact that 10 cm errors are a great achievement in a device-

free context, for real-world applications such as indoor cli-

mate control, intrusion detection, elderly monitoring or res-

cue operations these are extravagant numbers. Apparently,

there is a lack of communication between localisation com-

munities and ubiquitous computing and context-awareness 

communities. 

It is also not clear how errors as low as 10 cm can

be achieved in a device-free setting. As even an average

human being can occupy a ≈ 0.5 m 

2 area. Due to the

peculiarities and the range of sizes of the human body

we argue that these positioning errors can be biased and

replicating the same measurements in other settings can

be challenging. 

(iii) Effective f eature extraction. There are open problems that

are unique to CSI due to its structure. Recall that CSI is

the frequency response of a channel. A commodity chipset

provides 30 pairs of subcarrier amplitudes and phases for

a single antenna pair. The amplitude provides information

on the distance of the link through attenuation, however

the attenuation is not constant along all the subcarriers due

to frequency selective fading. LiFS [44] attempted to filter

the dirty subcarriers (affected by fading) recognised through

their model and inferred the positions of humans. To solve

the same problem [91] and [80] resorted to dimensional-
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Table 3 

Comparison of selected features from best available technologies . 

Technology (Mea-
sure, Transceiver,
Frequency)

R
ef
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ce
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rr
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p
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ev
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Special characteristics

W
ir
el
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s

N
et

w
o
rk

s

[75] 98a 2 23 64
Uncluttered indoor, targets ≤2m
apart, latency: 0.26 s

Radio Grids (RSS,
Chipcon CC2420
2.4GHz)

[161] 94a 4 63 300
Uncluttered indoor, targets 5m
apart on average

(CSI, AoA, WiFi) [88] 62c 1 4 51.8
nLoS link, cluttered environment,
LoS link 5m apart on average

(CSI, WiFi ) [44] 60c 2 11 150
nLoS link, cluttered home envi-
ronment, AP, client locations are
known in advance, latency:0.065 s

[6] 30a 1 30 70
Similar error in cluttered indoors
and in through-wall

RF
Tomography
(RSS, 802.15.4,
2.4GHz)

[162] 55a 4 33 58
Cluttered indoor, no. of targets
unknown a priori, their paths can
intersect, real-time operation

[163] 80b 4 24 84
Cluttered and through-wall unclut-
tered indoors

RF
Fingerprinting
(RSS, 802.11b,
2.4GHz)

[164] 250c 1 4 140
Cluttered indoor, minimum detec-
tion F-measure 0.93

[107] 256a 3
2APs

&
3MPs

130
Latency 2.56ms, 100% estima-
tion of occupants within 1 entity
difference

(RSS, 802.15.4,
2.4GHz)

[72] 130a 4 22 150
Cluttered indoor, 86% overall
counting percentage up to 4 people

Ambient FM
(RSS, SDR, 87–
111MHz)

[113] 96d 1 1 18
Coarse-grained positions, accuracy
degrades over time (≈1m in 5
days)

UWB (ToF,
FCC-compliant
UWB radios,
3–5.5GHz)

[126] 12–180 1 4 15
100% presence detection, no need
of training, deployable in cluttered
areas

RF Backscatter
(RSS,ToF,AoA,
SDR with WiFi
PHY, 2.4GHz)

[116] 12e, 80f 5 1 56
Resolves humans 0.5m apart or
more. With 5 radios errors reduce
to 7 cm and 70 cm respectively

(RSS,RFID tags
and reader, 800–
900MHz)

[117]
x=7.8c

y=20c 1

1
reader
&45
tags

28
Cluttered indoor, through-wall (5”
hollow wall and 8” concrete wall),
performs gesture recognition

R
a
d
ar

FMCW
(Doppler shift,
ToF, SDR, 5.46–
7.25GHz)

[27]
x=10a

y=13a

z=21a
1 1 30

LoS 3D and gesture recognition of
moving targets

[8] 11.7c 5 1 35
Tracks 4 mobile and 5 static
users,radar range:10m

FMCW, CW
(Doppler shift,
ToF, SDR,
5.8GHz)

[149] 10g 1 1 60

The interferometry mode detects
stationary person from vital signs
and FMCW mode detects absolute
range of the person. Cluttered,
indoor environment.

AP: Access Point, MP: Monitoring Point, [a] Mean error, [b] Root- mean-square-error, [c] Median error, [d] upper bound of 90% errors 

[e] Mean error for moving objects, [f] Mean error for stationary objects, [g] Maximum error. 
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Table 4 

List of acronyms. 

Acronym Definition 

AoA Angle of Arrival. 

AP Access Point. 

API Application Programming Interface. 

COTS Commercial Off The Shelf. 

CIR Channel Impulse Response. 

CSI Channel State Information. 

CT Computed Tomography. 

CW Continuous Wave. 

DFCW Differential Frequency Continuous Wave. 

DVB Digital Video Broadcasting. 

FCC Federal Communications Commission. 

FFZ First Fresnel Zone. 

FM Frequency Modulated. 

FMCW Frequency Modulated Continuous Wave. 

GSM Global System for Mobile. 

HMM Hidden Markov Model. 

ID IDentification. 

IDFL Indoor Device Free localisation. 

IQ In phase-Quadrature. 

ISAR Inverse Synthetic Aperture Radar. 

kNN k-Nearest Neighbour. 

LoS Line-of-Sight. 

LQI Link Quality Indicator. 

LTE Long Term Evolution. 

MIMO Multiple Input Multiple Output. 

MUSIC MUltiple Signal Classification. 

nLoS non Line-of-Sight. 

PCA Principal Component Analysis. 

PDF Probability Distribution Function. 

PLR Packet Loss Rate. 

RF Radio Frequency. 

RFID Radio Frequency IDentification. 

RSS Received Signal Strength. 

RTI Radio Tomographic Imaging. 

RX Receiver. 

SBC Single Board Computer. 

SFCW Stepped Frequency Continuous Wave. 

SDR Sofware Defince Radio. 

ToF Time of Flight. 

TX Transmitter. 

UWB Ultra-Wideband. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ity reduction techniques, linear (PCA) and non-linear (kPCA),

respectively. The intention is to efficiently extract features

from multiple streams of CSI. However, in these two ap-

proaches the attenuation of CSI is lost, therefore the ex-

tracted features can only be used for occupancy detection,

activity and gesture recognition. 

(iv) Deep learning for human sensing. Unlike traditional ma-

chine learning algorithms that require manual feature selec-

tion and definition of rules, deep learning is able to learn the

correct features and make the right predictions. Moreover,

recently, deep learning techniques have been successful in a

variety of fields including computer vision and speech recog-

nition which have similar data modelling challenges to hu-

man sensing such as noise in data and class diversity [165] .

Following this trend, there has been some progress in appli-

cation of deep learning to activity recognition using RFID in

device-based localisation [166] which can be easily adapted

to device-free activity recognition as well. 

(v) TX-RX frequency synchronisation. Precise estimation of the

carrier frequency offset is a major challenge faced by low

cost narrowband COTS transceivers which leads to phase

randomness of the received signal. Phase randomness not

only restricts accurate channel estimation for localisation, it

also impedes measuring the Doppler shift of the received

signal. Recently Luong et al. [167] introduced a platform

to frequency synchronise the transceivers and were able to

achieve a frequency difference of 0.1Hz for a transceiver op-

erating at a centre frequency of 434 MHz. 

(vi) Vital sign detection for human detection and localisa-

tion. Despite the potential of RF to locate static people,

most schemes still rely on motion for presence detection.

Currently, there are a few instances of detecting presence

through vital signs such as heart beats [143] or breathing

[4] , [77] but those are primarily constrained by range limi-

tations and clutter. Hence, there is an apparent need among

presence detection techniques to increase the effectiveness

in these schemes for real-world situations (e.g. office envi-

ronments in which people tend to stay static most of the

time). 

.2. Challenges and limitations 

(i) Deployment overheads. A concern in common with all

technologies is the deployment overhead in terms of time

and labour effort. This becomes even more complicated in

Fingerprinting approaches. In respect to the initial transceiver

deployment, RF Tomography and Radio Grids using TelosB

motes and RFID require the most sensing devices, 30–40 for

a 70 m 

2 area, to obtain good accuracy (accuracy of < 1m).

RF Fingerprinting and Radio Grids with WiFi devices require

fewer sensors, in the range of 5–20 for a similar area de-

pending on the type of radios being used. Hence, deploying

such high density of transceivers in multiple rooms will be

demanding in terms of labour and cost. If these devices are

battery-powered, maintenance and energy requirements will

be additional issues in the long run. 

(ii) Building energy consumption. Another complication with

the deployment of hundreds of transceivers and Single Board

Computers (SBCs) in a building will be the effect on overall

energy consumption of the building. It may turn out for ex-

ample that the energy savings achievable through the use of

occupant detection based climate and energy control may in

fact be cancelled out by the increased energy usage due to

the localisation and occupancy detection system. 

(iii) Hardware and maintenance costs. Among the fine-grained

localisation solutions, UWB transceivers used to be ex-
tremely expensive but are now reaching more modest

cost levels. As an example, a development kit with four

transceivers is around € 10 0 0 while a standalone transceiver

is around € 15. 

Advanced military radar systems with costs in the range of

tens of thousands of euros [117] are out of the scope of civil-

ian applications, however, alternative solutions such as SDR-

based radars and Wi-Fi APs provide very good accuracies.

The initial cost for prototype development is significantly re-

duced to €10 0 0–20 0 0. The cost of an SDR primarily depends

on its bandwidth, and the bandwidth is related to the overall

accuracy. In this context, device-free RFID is also a reason-

able option with costs of readers ranging from €60 0–20 0 0

and tags at 15 cents [117] . 

Considering other low cost options, deployment of a mul-

titude of € 90 TelosB motes (e.g 30 in a 70 m 

2 area [6] )

in Wireless Networks ultimately result in costs in the range

of € 2700. Despite this, higher volumes of purchases will

likely reduce costs if there is real world uptake, even though,

maintenance costs will still remain. Considering these facts,

localisation schemes that employ COTS Wi-Fi chipsets cost-

ing as low as € 10 and included in SBCs are the most cost-

effective among the current solutions. 

(iv) Interoperability with other appliances . Wireless Networks ,

especially, use frequency diversity as a strategy to in-

crease the localisation accuracy. These devices typically op-

erate in the Industrial, Scientific, and Medical radio band
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(ISM). An issue that naturally occurs with high densities

of transceivers in Wireless Networks that use frequency di-

versity in indoor environments is the interference to other

nearby wireless devices (e.g. commonly used Wi-Fi devices

such as laptops or smart phones). 

(v) The threat on privacy and security. A major advantage of

RF-based localisation over computer vision is the increase

of occupant privacy. However, recent advances in presence

detection, activity or gesture recognition schemes present a

new kind of threat especially for Wi-Fi users. Intruders can

exploit the pervasiveness of Wi-Fi installations in extracting

key information about occupants such as their time of pres-

ence during the day or involved activities which can be use-

ful intelligence for criminal purposes [168] . 

(vi) Scalability to large crowds and indoor spaces. It is no-

ticeable that the maximum number of simultaneously lo-

cated persons is less than six among all aforementioned

schemes. This is an acceptable number for small rooms and

office cubicles. The area size for the most successful method

(in terms of the number of users detected with good accu-

racy) is merely 56 m 

2 [116] . For real-world applications that

involve large crowd gatherings such as exhibition centres,

shopping malls and conferences, it is apparent that none of

those methods are scalable in their current state. Potentially,

technologies like FMCW radar, Backscatter or Wi-Fi CSI may

exceed these numbers in the future ( Table 4 ). 

8. Conclusion 

This article analysed the current progress in RF-based indoor

device-free localisation giving precedence to indoor positioning.

We analysed the literature by decomposing the localisation di-

mensions into occupants, space and time. We also included a de-

tailed taxonomy and a comprehensive review of the localisation

techniques. We evaluated the respective technologies qualitatively,

discussed trends, limitations and also indicated several future re-

search directions. Based on the review, we also identified some

emerging device-free localisation technologies. 
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