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Abstract—Recognition of the context of humans plays an
important role in modern applications such as intrusion de-
tection, human density estimation for heating, ventilation and
air-conditioning in smart buildings, and workspace safety guar-
antee for workers during human-robot interaction. A common
challenge for current solutions in traditional radio sensing is
to distinguish simultaneous movement from multiple subjects
and the remaining solutions require prior training efforts. Here
we present an approach that exploits multi-antenna installa-
tions to detect and extract activities from spatially scattered
human targets in an ad-hoc manner. We perform receiver-
side beamforming and beam-sweeping over different azimuth
angles to detect human presence in those regions separately.
We characterize the resultant fluctuations in the spatial streams
due to human influence using a case study and make the traces
publicly available. We demonstrate the potential of this approach
through two applications: 1) By feeding the similarities of the
resulting spatial streams into a clustering algorithm, we count
the humans in a given area without prior training. Through
experiments using our wireless test-bed, we perform training-
free human counting of up to 6 people in a 22.4 m2 area with
an accuracy that significantly exceeds the related work. 2) We
further demonstrate that simultaneously conducted activities and
gestures can be extracted from the spatial streams through blind
source separation.

Index Terms—Radio sensing, Training-free crowd counting,
Multi-subject recognition, Beamsteering

I. INTRODUCTION

Our research explores passive radio sensing analyse human
presence, crowd size and to track and eventually recognize
motion and interaction. Such human context can be unearthed
continuously and without requiring human subjects to wear
any devices. In contrast to vision sensors, privacy is ensured
through unobtrusive RF-sensing that can be integrated with
existing indoor WiFi/cellular installations simply through soft-
ware updates. We leverage ambient (or stray) radio signal
streams like those found in cellular 4G/5G and WiFi.

A common challenge in traditional radio sensing is to
distinguish simultaneous movement from multiple subjects [1].
Essentially, perturbations in the signal strength are typically
analyzed at a receiver and interpreted as activities, gestures
or other relevant motions [2], [3]. Perturbations caused by
reflections and scattering off targets result in amplitude fluc-
tuations, frequency or phase shift due to movement. In the
case of multiple subjects, reflected signals are superimposed
(constructively or destructively) and it is not a trivial task to
distinguish individual movements apart [4].

As a solution, we present a sensing scheme that exploits
multi-antenna installations to detect and track activities from
multiple persons simultaneously. This is achieved by steering
the receiving antenna array’s directivity over the area of in-
terest and collecting spatial streams representative of different
regions corresponding to different azimuth angles. This is il-
lustrated in Fig. 1. The spatial streams can have different levels
of correlations (not fully orthogonal as in the figure) depending
on the antenna array size, sweeping resolution and the distance
of human subjects to each other. Therefore, in this work
we first collect data traces from experiments where multiple
persons simultaneously perform activities. We analyze these
data traces and identify unique characteristics in the spatial
streams and explain the reasoning for such behaviour using
models. Next, we transfer this knowledge for multiple human
recognition. We demonstrate the potential of this to infer hu-
man context using two applications: 1) training-free counting
of human subjects, and 2) blind extraction of activities of an
individual when multiple people perform different activities
simultaneously. People counting and simultaneous inference
of their activities are important problems in many application
domains. In surveillance systems, automatic people counting
is a pre-condition to further processing [5], for instance,
to estimate capacity at large public events [6] and to plan
procedures during emergency situations [7]. In order to ensure
workspace safety and production efficiency during human-
robot cooperation in manufacturing environments, continuous
and accurate perception of worker activities is required [8].

The contributions of this paper are threefold. (i) As the
first and main contribution, we report from a case study
analyzing the impact on the spatial streams from multiple
subjects conducting simultaneous and distinct activities and
gestures. We collect these traces from a prototype, using
USRP software defined radios consisting of a transmit antenna
and a phase synchronised four-antenna OFDM receiver (4x52
carriers) and run experiments in a 22.4 m2 semi-anechoic
chamber. We make available the labelled RF data together with
phase configurations to steer the reception between −90◦ to
+90◦ azimuth angles [9]. (ii) A training-free people count-
ing algorithm that counts people when they simultaneously
conduct distinct activities. Empirical results from over 100
experiments with up to 6 human subjects show that 0 − 4
persons can be detected within one person error in ≈100%
of the time, 5 persons 43% and 6 persons 50% of the time
without any training efforts. In comparison to a state-of-the-
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Fig. 1: Concept of multiple people counting through beam-
steering. Steering matrix QA applied to channel HA amplifies
the signals scattered from the person at position A, QB on HB

amplifies the signals from person B and QC on HC amplifies
the signals from person C.

art crowd counting approach [3], we demonstrate significant
human count estimation improvement. (iii) As the final con-
tribution, we apply a blind source separation method on the
spatial streams to extract 20 out of 21 human gestures from
one person when up to three persons simultaneously perform
distinct activities.

II. RELATED WORK

Human sensing modalities. Most prominent device free
sensors used for people monitoring exploit the properties of
reflectivity with time-of-flight (ToF) cameras, emissivity with
thermal images or acoustic. They are, however, constrained by
ranges, occlusions, environmental (smoke/fire) conditions, and
privacy concerns [10], [11]. Non-image based solutions usu-
ally demand that people carry a device, yet, they limit human
subjects’ mobility, visibility, and communication practice [12].
Device-free solutions, which do not require people to wear any
devices, are therefore more interesting and promising.
Device-free radio sensing. Device-free localization, track-
ing and activity recognition using radio signals have shown
advantages over camera or wearable device-based solutions
due to low intrusion of privacy and convenience [13], [14].
Research has demonstrated the use of various radio signal
measurements for human sensing including time delay [2],
phase [15], Doppler [16] and signal strength [17]. Those
have been used for purposes like vital sign monitoring [18],
activity and gesture recognition [19], [20], localization [21],
gait identification [22] and fall detection [23].

Even though beamforming and beamsteering has been previ-
ously used for device-based localization, it is not prominently
used in device-free radio sensing. The remaining solutions
track minute movements or small objects through beamform-
ing. Wihear [24] used beamforming to focus a beam on a
person’s mouth to mitigate multipath effects from the envi-
ronment for lip reading and speech recognition using SDRs
and a WiFi physical layer. mtrack [25] leverages electronically
steerable antennas to track small objects like pens using
60 GHz millimeter wave radios. Our previous work explored
the extraction of the direction of arrival (DoA) of a human
target through beamforming [26]. In contrast to these works,

we use receiver-end beamsteering to sense full body motions
to count people and extract there activities.

People counting. The feasibility of people counting from RF-
signals has been demonstrated by previous works [27], [28],
[29], [3]. One straightforward approach for people counting
is the utilization of dispersion in the received signal strength
(RSS) [17], [30] or CSI [27], which is loosely correlated to the
number of people present in a space. It is well known that RSS
variation in commercial transceivers as a signal descriptor is
not stable to count people due to low granularity and multipath
effects. In order to distinguish spatially separated people, [17]
uses transeivers that are spatially distributed. Other approaches
for crowd counting have explored using multiple antennas in
both transmitter and receiver to achieve spatial diversity [28],
information theory based methods like transfer learning to
minimize the environment impact on people counting fea-
tures [3], as well as exploitation of additional frequency-
domain features such as the shape of the Doppler spectrum
which is correlated to the number of people moving in the
monitored environment [29]. Our approach is different to these
works in that we use beamsteering using multiple antennas
at the receiver to count and extract activities of spatially
distributed people and has the advantage of not requiring prior
training.

III. SPATIAL FILTERING USING OFDM BEACONS

Here, we implement a delay and sum beamformer using
OFDM beacons. The beamformer consists of a Uniformly
spaced Linear antenna Array (ULA) as shown in Fig. 2a. The
narrowband signal received at time instant t by the ULA is
modeled as

x(t) = s(t) + i(t) + n(t) (1)
where s(t), i(t) and n(t) are CM×1 vectors representing the
line of sight (LoS) signal, signal scattered off a person and
noise respectively. Unlike in device-based localization where
s(t) is the desired signal, i(t) is the desired signal in our case
and it can be amplified by finding the correct steering vector.
A signal arriving from direction j ∈ N at arrival angle θj ,
induces a phase shift of λ/2 · sin(θj) in antenna element m
relative to the element m − 1 where λ is the wavelength. A
phase shifter connected to the array element m changes the
phase of the input signal by φm. By setting the phase shift

φmj = −m · λ
2
· sin(θj) (2)

and summing the shifted signals, the received power corre-
sponding to the angle θj can be maximized. This way the beam
can be steered to the desired direction j and qj = [φ1j . . . φ

M
j ]

forms the steering vector for that direction. Since radio waves
arrive at the receiver over multiple paths due to reflection and
scattering from human subjects in the environment, and these
signals are superimposed in the line of sight signal, the steering
vector that maximizes the signal amplitudes corresponding to
the human is unknown. Therefore we generate steering vectors
for azimuth angles −90 ≤ θj ≤ 90 using Eq. 2 so that signals
arriving from direction j are amplified by the jth steering
vector.
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Fig. 2: (a) The phased array system that maximizes signals
arriving from direction θj by steering the beam. (b) Experi-
ment Environment. # of RX antennas: 4, # of TX antennas: 1,
antenna heights from ground: RX 0.89 m, TX 0.85 m, room
size: 5.6 m × 4 m × 2.184 m. A, B, C, D and E are human
locations

In what follows, we explain how this is achieved using the
OFDM symbols. In OFDM, a channel is divided into multiple
subcarriers and data is modulated in each subcarrier. In our
testbed (detailed in Sec. VII-A), a 12.48 MHz channel is di-
vided into 52 sub-carriers each with a spacing of 240 kHz.The
transmitter sends a beacon with a known sequence a(t) each
subframe. IQ samples xm(t) are received by antenna element
m. xm(t) can be represented as Xm(f) = Hm(f) · A(f)
where Xm(f) = FFT{xm(t)}, A(f) = FFT{a(t)} is the
transmitted beacon and Hm(f) is the wireless propagation
channel. A signal arriving from direction j introduces a phase
rotation of ψmj =

2πcτm
j

λ due to the time delay τmj to arrive at
antenna element m where c is the speed of light. We estimate
ψ̃mj ≈ ψmj by computing the cross-correlation r(ψm),

r(ψm) = FFT−1{Xm(f) ·A(f)∗} (3)
and ψ̃mj maximizes the correlation between transmitted and
received beacons:

ψ̃mj = argmax
ψm

|r(ψm)| (4)

This approach is possible because a truncated version of fre-
quency domain Zadoff-Chu sequence used in LTE is adopted
here as A(f) [31]. The sequence was truncated because it
was longer than the number of available subcarriers. Finally,
steering vector qi for direction i ∈ N is directly applied on r
at time instant t

si(t) = |qi · rj| (5)
to obtain spatial stream si for a total duration of
T with si = [si(1), si(2), . . . si(T )]

T where rj =
[r(ψ̃1

j ), r(ψ̃
2
j ), . . . r(ψ̃

M
j )]T .

IV. CHARACTERIZATION OF SPATIAL STREAMS FROM A
PRACTICAL EXPERIMENT

In this section, we collect data traces from a practical
experiment wherein up to five persons perform distinct in-
place activities at five different locations. We apply spatial
filtering according to Sec. III and analyse the behaviour of
the resulting spatial streams in the directions of the human
occupants.

A. Experiments

We conducted a case study (Fig. 2) in a semi-anechoic
chamber of size 4 m × 5.6 m. A signal continuously emitted
by a single antenna transmitter was captured by a receiver
with a ULA of 4 phase-synchronized elements. The antenna
elements have a spacing of λ

2 where λ is the wavelength
at a carrier frequency of 3.42 GHz1. We performed five
measurement campaigns having one person at B, two persons
at D & E, three persons at B, C, & D, four persons at B,
C, D & E and 5 persons at A, B, C, D, & E performing
distinct in-place activities simultaneously while IQ samples
were collected.

The steering vectors for directions A, B, C, D & E were
derived from 5 other measurement campaigns by placing a
single antenna transmitter at positions A, B, C, D and E
in a human-free environment and recording the IQ samples.
Then we computed the azimuth angles for those five positions
by minimizing the mean square error between the measured
steering vectors and the modeled steering vectors for azimuth
angles −90 ≤ θj ≤ 90 using Eq 2 [26]. The azimuth angles
that yielded were −32◦, −23◦, −6◦, 5◦, 21◦. Learning the
azimuth angles and the corresponding steering vectors helps to
understand directions of the considered positions and generate
steering vectors for the nearby azimuth angles.

B. Characterization of the spatial streams.

We divide the analysis of the spatial streams into four
categories based on the number of human subjects: single
person, two persons, three persons and four and five persons.
Fig. 3 summarizes these cases. In all figures, the amplitudes
are centered to have zero mean and eliminate the LoS effect.

1) A single person: Fig. 3a shows the fluctuations in the
spatial streams when there is a person in the direction of B.
Comparing all the streams, the spatial stream in the direction
of the person, stream B in Fig. 3a, is clearly excited and
has the highest fluctuation, i.e., stream B has the highest
variance among all streams. However, the adjacent streams
also experience correlated fluctuations to the spatial streams
that a human occupies, e.g. streams A and C in Fig. 3a. The
adjacent streams, A and C, despite having similar patterns
to the human occupied stream, have distortions like local
scaling and noise. Other streams, D & E show fluctuations at
similar time instants yet with a higher attenuation: in Fig. 3a
spatial streams D and E show correlated fluctuations with high
attenuation, however the majority of the stream is dominated
by Gaussian noise.

We further verify this behavior by constructing the array
response of the ULA by placing a unit source at direction
B. The array response can be constructed by multiplying
the steering vector of direction B by the steering vectors of
azimuth angles −90 ≤ θi ≤ 90. Fig. 4 shows the array
responses of directions A, B, C, D & E and the response
of B is specially highlighted in red. Given that A, B and C
have azimuth angles of −32◦, −23◦ and −6◦, the amplitude

1 A license for using this frequency in our campus area exists.
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Fig. 3: (a) One human subject at B, (b) Two human subjects at D & E, (c) three human subjects at B, C & D, (d) four human
subjects at B, C, D & E, (e) 5 humans subjects at A, B, C, D & E.
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Fig. 4: The array responses for directions A, B, C, D & E
interfering each other.

of B has about 50% influence on C and 80% influence on
A. Whereas the influence on D and E are below 25% which
explains the high amount of noise in D and E.

2) Two persons: Fig. 3b corresponds to the spatial streams
when ‘two’ humans reside in directions ‘D’ and ‘E’ (we denote
this as 2DE). We notice that in certain subsequences, similarity
between D and E can be observed, especially between 0 and
7.5 s. However, the adjacent pattern C where a human does
not exist is also similar. We quantify these similarities using
constraint derivative dynamic time warping (cDDTW) distance
di,j where i, j ∈ {A,B,C,D,E} such that 0 ≤ di,j < 1
(Table I, cf and a lower value for di,j indicates a high
similarity. Sec. V-B2). Accordingly, for 2DE, dC,D = 0.38
is less than dD,E = 0.5. This behaviour can be explained as
follows. As stream C corresponds to a human unoccupied link,
adjacent to human occupied stream D, C is only interfered by
D. However, as both D & E are occupied by humans, they are
mutually interfered from each other, causing a lower similarity
(and a higher distance for dD,E). Again, the spatial streams
beyond stream C witness high attenuation similar to the single
human cases in Fig 3a.

3) Three persons: Fig. 3c corresponds to the case where
three humans reside in the directions of the spatial streams B,
C and D (denoted 3BCD). Again, the streams B, C and D show
similarity intermittently in subsequences. Especially, streams
C and D show the highest similarity which is confirmed by
dC,D = 0.27 for 3BCD in Table I.

Stream B indicates low fluctuations unlike C or D. In-
terestingly, stream A indicates a noise dominated stream
showing little to no influence from B. This is also indicated

1B 2DE 3BCD 4ABCD 5ABCDE
A-B 0.58 - 0.58 0.38 0.43
B-C 0.28 - 0.48 0.47 0.5
C-D - 0.38 0.27 0.33 0.3
D-E - 0.5 0.55 0.47 0.5

TABLE I: Similarity between human occupied stream and
the adjacent stream quantified using cDDTW for experiments
having a single human (left table) and multiple humans (right
table). 1A, 1B etc. in the tables denote the number of humans
in the experiment and their positions.

by dA,B = 0.58. This behaviour indicates that the person at
B is not involved in large body movements. Given that the
major pattern in C, D and E are not leaked to B, we can
conjecture that the most influential human motion is at D.
This behavior can be attributed to the type of activity that the
person performs in respective streams. As an example, if a
person is involved in full body motion at stream D, the body
can disrupt the multipath heavily causing spatial streams C
and E to have high interference from D.

4) Four and five persons: Fig. 3d illustrates the case where
4 humans reside in spatial streams B, C, D and E and Fig. 3e
illustrates the case for 5 humans in streams A, B, C, D and
E. The trends among the streams where humans are present
are consistent to what was observed in the three human
subjects case where there is similarity in adjacent streams
with local dissimilarities. In the single human subject case,
di,j = [0.13, 0.64] among adjacent streams, whereas here,
di,j = [0.3, 0.5] among AB, BC, CD and DE. This indicates
that the adjacent streams do not have drastic differences when
4 or 5 humans occupy the streams. However, the frequency of
dissimilarities in subsequences (local dissimilarities) between
adjacent streams tend to increase as more humans occupy the
adjacent streams compared to the cases with two or three hu-
mans. This can be expected as nearby streams tend to interfere
more with each other. When more humans occupy adjacent
streams, more interference among them can be expected.

Summarizing, main observations of this section are:

1) Spatial streams fall into three categories: a) streams having



direct influence from a person, b) unoccupied streams
adjacent to a human occupied stream showing correlated
fluctuations, and c) streams that are unoccupied and dom-
inated by noise.

2) Presence of a person has most influence on the stream in
that person’s direction followed by both adjacent streams.

3) If two adjacent streams are occupied by two persons, both
streams can show correlated fluctuations with intermittent
discontinuities (occlusions).

4) Distortions between two streams can occur irrespective
of whether those streams are occupied by persons or not
a) amplitude offset, b) local scaling: subsequences have
different amplifications, c) complexity: subsequences have
Gaussian noise, and d) patterns are similar but inverted.

We now use these observations to develop an algorithm to
count the number of people in spatial streams.

V. HUMAN SUBJECT COUNTING

Estimation of a single person can be achieved by using a
beamscanning technique where the direction of arrival (DoA)
of that person forms a Gaussian distribution over time [26].
However, when there are more than one person, this method
fails as the DoA distributions often look like a mixture of
Gaussians due to the superposition of the responses of two
or more people. Therefore, along with the above method,
here we propose an algorithm for estimating more than one
person based on the observations in section IV. As shown in
Fig. 5 the solution is divided into three processes: i) Divide
the IQ samples from the receiver using spatial filtering. The
spatial filtering executes the functionality as mentioned in
Sec. III where it applies the steering vectors of N directions
on the IQ samples of the receiver to obtain N spatial streams.
ii) Detection of the absence of a person in a spatial stream
and discarding those streams, and iii) human count estimation
using the remaining streams.

A. Detecting vacant spatial streams

According to Sec. IV, the detection of fluctuation in a spatial
stream is not a necessary indication of the presence of a
human as interference from nearby spatial streams can also
cause fluctuations. Therefore, we filter the human-free spatial
streams by comparing the distribution of those to a Gasussian
distribution to increase confidence that no human exists in a
given stream si. Here we model the distribution of human free
data traces as a Gaussian distribution based on the assumption
that streams having no influence of the human are dominated
by Gaussian noise.

To detect that no human exists in stream si, we first center
the stream to have zero mean to remove any amplitude offsets

Spatial
filtering

I/Q
samples

N spatial 
streams

L spatial 
streams

C
Estimate
human
count

Detect
human

absence

Fig. 5: Modularized architecture for human counting.

and apply Kullback-Leibler divergence DKL,i between the
probability mass function (PMF) PF (x) of random variable
x from amplitudes of a Gaussian distribution modeling the
human-free data traces and the PMF Pi(x) of stream si.

DKL,i(Pi|PF ) = −
∑
x

Pi(x)log
(
PF (x)

Pi(x)

)
(6)

When DKL,i < ThF such that ThF is the maximum
Kullback-Leibler divergence corresponding to the Gaussian
distributed traces, we consider stream i to be free of a person.
Accordingly, the L ≤ N streams that indicate a human
presence are exploited for human count estimation.

B. Human Count Estimation

Estimating the human count when one person is present
can be achieved by using a beamscanning method as in [26]
where the . To estimate the human count from the selected L
spatial streams, we utilize the observations made in Sec. IV-B.
Here, we work on the premise that the amount of similarity
of two spatial streams is an indication of the human count.
As an example, if two adjacent streams have a high similarity,
this indicates the influence of one person, and if two streams
have motions with low similarity, this indicates the influence
of two or more persons in the direction of those two streams.
First, we capture these similarities using a distance measure
and feed them to a clustering algorithm so that the number of
clusters in the spatial streams indicate the number of people
in those streams.

1) Segmentation to subsequences: We divide each spatial
stream si into P subsequences and estimate the human count
within each subsequence p ∈ P . As observed in Sec. IV-B, the
sequences can have dissimilarities within certain time intervals
due to occlusions. Segmentation helps to capture these effects
in a high granularity in time. Additionally, the computation
time in subsequent steps, e.g. during similarity measurement
of the subsequences, can also be reduced.

2) Measuring similarity of the spatial streams: As the
distance measure selection is domain dependant [32], we first
study the types of distortions that exist in our time series data.
We treat the spatial streams as different time series.

The types of distortions that are unique to any two streams
in our data as mentioned in Sec.IV are i) amplitude offet,
ii) local scaling, iii) occlusion, iv) complexity and v) inverted
similar patterns. From these distortions, invariance to ampli-
tude offset is achieved by z-normalization, and complexity
invariance is achieved by noise filtering. Occlusions in our
case are a desired effect, therefore, we select a distance
measure that is sensitive to occlusions in the data. Additionally,
distance measure should be invariant to local scaling. The
most commonly used distance measure in the literature that
achieves local scaling invariance is dynamic time warping
(DTW) which allows a local non-linear alignment between the
sequences [33]. However, this may yield unnatural alignments
where a single point on one subsequence is mapped onto
a large subsection of another subsequence. Therefore, we
apply constrained derivative dynamic time warping (cDDTW)
[34]. To achieve invariance to pattern inversion, we apply



cDDTW two times for each pair of subsequences, once for
the original subsequence and another time for the inverted
subsequence. Then, we obtain the minimum distance from
those two instances.

In cDDTW, the DTW algorithm is applied to minimize
the warping distance between the first derivative of the time
sequences. This way it is easier to capture the shape-based
similarity by mitigating distortions in the amplitude. On the
other hand, by constraining the warping path to visit a subset
of the cells, an accurate distance between the sequences can be
found as too much flexibility can result in poor discrimination
between the sequences [35].

cDDTW is sensitive to noise in the spatial streams as the
first derivative of each time sequence is required, furthermore,
the derivative operation introduces additional noise. Therefore,
we apply a 4th order Butterworth low pass filter with cut-off
frequency at 30 Hz to isolate the effects of human motion both
before and after applying the derivative operation. We apply
cDDTW among all pairs of L spatial streams and obtain an
L× L distance matrix D

D =


0 dp1,2 · · · dp1,L
dp2,1 0 · · · dp2,L

...
...

. . .
...

dpL,1 dpL,2 · · · 0

 (7)

where dpi,j is the cDDTW distance between spatial streams i
and j at subsequence p.

3) Clustering and human count estimation: We cluster
spatial streams into groups conditioned on their similarity
to each other. Hierarchical agglomerative clustering (HAC)
is chosen as the clustering algorithm because of its inherent
capability of finding natural clusters within data [36]. Here we
feed the distance matrix D directly to the clustering algorithm
and construct a cluster tree. Then we extract the median
linkage [37] between each cluster in the hierarchy. Median
linkage measures the Euclidean distance between weighted
centroids of two clusters. We find natural clusters within the
spatial streams similar to an approach on finding the knee of
an error curve [38]. More specifically, the median linkage with
maximum separation between any two clusters is selected as
the cut off point to select the number of natural clusters Cp for
subsequence p. As an example, Fig. 6a illustrates a hierarchical
tree structure of five spatial streams A, B, C, D & E while
three humans are present in the directions of streams B, C &
D. HAC correctly identifies the similarities of A, B and D, E
and groups A & B into cluster 1, D & E into cluster 2 and
C into cluster 3. As the distance between links 2 and 3 is
the highest distance among all the links in Fig 6b, the cut-off
height lies between links 2 and 3 which results in 3 clusters.

VI. EXTRACTION OF INDIVIDUAL ACTIVITIES

In this section we implement an algorithm to extract the
activity patterns when multiple people exist in an area. Here
we use L spatial streams computed for the azimuth angles
−90 ≤ θi ≤ 90 with 1 degree resolution. As already discussed
in Sec.IV, these streams are not completely orthogonal to
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Fig. 6: Finding natural clusters from a hierarchical cluster
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Fig. 7: Human count estimation process within a subsequence.

each other and activity patterns of each individual are mixed
in different proportions depending on the positions of the
persons. Therefore, we use a blind source separation approach
to extract these activities.

In the literature, there exists different types of blind source
separation algorithms with most popular being independent
component analysis (ICA) [39]. These algorithms try to exploit
certain statistical properties or temporal structures of the latent
sources. Here we cannot assume that the sources, i.e, the
activities of the persons have a certain temporal structure due
to the complexity of human behaviour. Therefore, in this work,
we use a variant of ICA, joint approximate diagonalization of
eigen-matrices (JADE) algorithm [40] which assumes that the
latent sources are non-Gaussian. We observed in Sec IV how
the spatial streams impacted by a person lost the noisy Gaus-
sian structure, which motivated the use of this approach. In
JADE, the spatial streams are transformed to the latent source
signals by exploiting fourth order moments of the spatial
streams which is a measure of Gaussianity and independence
of the sources.

One issue with JADE is that the number of mixtures should
be equal to the number of sources, i.e, we should have an
estimate of the people count, and the dimensions of the spatial
streams should be reduced from L to the people count. As a
solution, we use principal component analysis (PCA) [41] to
reduce the dimensions of the spatial streams and whiten the
data before applying JADE.

VII. IMPLEMENTATION

A. Testbed Description

The measurements were obtained using our software-
defined radio platform [42]. The system used in these measure-
ments has two parts: a receiver and a transmitter. The transmit-
ter is comprised of a host computer running Ubuntu 16.04 and



TABLE II: Main parameters of the testbed.

Center
frequency BW Useful

subcarriers Samples/s Antennas

3.42 GHz 15.36 MHz 52 5408 1× 4

TX

RX

5.6m

4m

2.
87
m
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8m
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0.85m 0.35m
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(crawl)
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(squat)
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Fig. 8: (a) Experiment Environment (semi-anechoic chamber)
of the second campaign. (b) Measurement setup for steering
vector calculation for 12 directions e.g. steering vector of the
direction of location 4 is estimated by placing the TX at 4 and
getting IQ samples when no human is present. (c) 5 people
performing in-place activities in the experiment environment.

a Universal Software Radio Peripheral (USRP) X300 series
with UBX-160 and SBX RF-daughterboards as the radio front-
ends. The receiver was comprised of three USRPs, of which
two served to collect the signal from the other high-level node
(= transmitter). The third device is the reference USRP. It
operates by synchronizing over the air with the primary two
USRPs and then transmitting a reference signal to calibrate
the starting offset between them. A four element ULA with
λ
2 inter-element spacing was connected to the data collection
USRPs. Dipoles were used as array elements.

Phase coherence between the two receive USRPs was
accomplished using a clock distribution system. It provides
both a pulse-per-second signal and a 10 MHz reference signal
to discipline the local oscillators of the USRPs. A reference
transmitter was however also necessary due to the effects
reported in [42]: inter-device random phase offset at start-
up and component variable in each RF chain. Additionally,
the presence of the reference transmitter helps ensure that
phase coherence, and therefore beamforming performance, is
maintained throughtout the measurements.

Table II summarises the main parameters used in our
testbed. The air-interface configuration utilised was an OFDM
frame structure at a carrier frequency of 3.42 GHz. The total
bandwidth of the system was 15.36 MHz with 52 useful
subcarriers yielding a useful bandwidth of 12.48 MHz. Each
USRP stream IQ samples at a rate of 16.66 megasamples per
second. The time domain subdivides into subframes of 3082
samples in length, yielding approximately 5408 subframes per
second. This rate is essentially the sampling rate of the IQ
samples used as input to the spatial filtering module.

B. Experiment Setup

We performed experiments in two measurement campaigns.
CAMPAIGN-I. We used the experiment setup in Fig. 2 detailed
in Sec. IV-A. Even though the experiment area is an anechoic

chamber, ground reflections are still possible as the ground
was not insulated with radio wave absorbents. Therefore, it is
essentially a semi-anechoic chamber. Table III shows the num-
ber of persons that participated in each experiment and their
position (A,B,C,D or E) in the room. The maximum number of
participants in any given experiment in this campaign did not
exceed 5. The distance between any two participants in this
campaign belongs in the interval [0.5 m, 2 m]. We collected
measurements for 26 types of experiments, each lasting for
7.5 s and each experiment was repeated again to collect a
total of 52 measurements. Experiments with indices 1-22 were
in-place random activities while in experiments 23-26, the
participants were walking in the experiment area.

CAMPAIGN-II. For this 2nd campaign, we used the experi-
ment setup in Fig. 8a with following settings. Number of RX
antennas: 4, the number of TX antennas: 1, antenna heights
from ground: RX 0.89 m, TX 0.85 m, room size: 5.6 m
× 4 m × 2.184 m. Locations marked 1 − 12 are to be

occupied by humans. We increased the number of positions
in the room which humans can potentially occupy to 12.
The steering vectors for the directions were also computed
as described in Sec III. Table III illustrates the number of
persons that participated in each experiment in this campaign
and their position (this time 1−12) in the room. The distance
between any two participants in this campaign belongs in the
interval [0.8 m, 4 m]. Here, we collected measurements for 36
types of experiments each lasting for 7.5 s. Experiments with
indices 1-24 and 33-36 were repeated again and experiments
having the indices 25-32 were only performed once. Therefore
the total number of experiments were 64 in this campaign.
Experiments with indices 1-22 were in-place activities where
the participants remained in a 0.8 m × 0.8 m square they
were assigned to as shown in Fig. 8a. In experiments 23-24,
the participants were circling the experiment area, walking
through all the positions marked in the figure. The maximum
amount of participants for any given experiment was 6. The
types of in-place activities that were performed by the partic-
ipants include squatting, walking inside the assigned square,
standing, jumping, crawling and hand gestures.

Parameter Selection. As our test-bed provides samples at
5408 samples/s, we downsample them to 360 samples/s. The
main motivation for selecting this sampling rate is to reduce
the computational time in the cDDTW algorithm. Therefore,
each experiment lasting for 7.5 s produces 2700 samples
at 360 Hz. As mentioned in Sec. V-B1, these samples are
divided into P = 13 subsequences having a length of
ls = 267 samples and each subsequence has an overlap
of lo = 67 samples with the neighbouring subsequence.
ls and lo are empirically identified to minimize the human
count error by varying ls = {200, 267, 334} samples and
l0 = {67, 134, 201} samples. The human count error is
measured by finding the absolute difference between estimated
human count (H̃c) and the ground truth human count Hc.



TABLE III: Experiment parameters of the two measurement campaigns. Experiment index, the position of each person in the
environment and the number of participants in each experiment are illustrated here.

C
A

M
PA

IG
N

-I

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Position - A B C D E AB BC CD DE ABC BCD CDE ABCD BCDE
Count 0 1 1 1 1 1 2 2 2 2 3 3 3 4 4
Index 16 17 18 19 20 21 22 23 24 25 26

Position ABCDE - A AB ABC ABCD ABCDE - - - -
Count 5 0 1 2 3 4 5 2 3 4 5
Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
A

M
PA

IG
N

-I
I Position 1,3,4,6 1,2,5,6 3,4,9,10 3,4,8,11 2,5,9,10 1,6,7,12 2,3,4,5 3,9,11 2,4,10 2,3,4 2,5 3,4 7,12 2,10 2, 10

Count 4 4 4 4 4 4 4 3 3 3 2 2 2 2 2
Index 16 17 18 19 20 21 22 23 24 25-32 33 34 25 36

Position 10 2 2,3,4,5,6 2,4,6,8,10,12 1,3,5,7,9,11 1,2,3,4,5,6 2,3,4,5,9,10 - - - 2,10 3,4 2,5 7,12
Count 1 1 5 6 6 6 6 2 1 0 2 2 2 2

Estimated (H̃c) Estimated (%)
0 1 2 3 4 5 6 0 1 2 3 4 5 6

0 12 0 0 0 0 0 0 0 100 0 0 0 0 0 0
1 0 16 2 0 0 0 0 1 0 89 11 0 0 0 0

A
ct

ua
l

(H
c
)

2 0 1 14 14 1 0 0 2 0 3 47 47 3 0 0
3 0 0 1 16 1 0 0 3 0 0 5.5 89 5.5 0 0
4 0 0 3 9 4 3 0 4 0 0 16 47 21 16 0
5 0 0 6 2 6 0 0 5 0 0 43 14 43 0 0
6 0 0 0 2 2 3 1 6 0 0 0 25 25 37.5 12.5

TABLE IV: People counting confusion matrices. Actual vs
Estimated count (left) and Actual (%) vs Estimated (%) (right)

VIII. PERFORMANCE EVALUATION

A. People Counting Confusion Matrix

We evaluate the performance of the proposed training-free
human counting algorithm using two data sets CAMPAIGN-I
and CAMPAIGN-II by comparing the actual human count Hc

against estimated H̃c. Table IV shows the confusion matrix for
both campaigns where the maximum number of participants
was 6, and the total number of measurements was 116. When
the actual human count, Hc, is between 0 − 4, the algorithm
estimates it well up to one person error where 0-1: 100%,
2: 99%, 3: 100% and 4: 84%. When Hc exceeds more than
4 humans, the algorithm underestimates the count within
1 − 3 humans with accuracies of 5: 43% and 6: 50% within
one person error. Accuracy degradation when the number
of humans increase can be explained as follows. For the
experiments, only a 4 antenna ULA is used at the receiver and
the minimum distance between two nearby human subjects
is only 0.8 m in a 22.4 m2 room. In the current setup, the
adjacent spatial streams experience mutual interference. It is
well known that, as the number of antenna elements increase
in the linear array, the beamwidth can further be reduced
so that the interference on adjacent spatial streams can be
further attenuated. We also note that when Hc = 0, in both
campaigns, the human count is estimated correctly in 100%
of the cases. This is due to the fact that the human vacancy
detection algorithm in Sec V-A distinguishes human occupied
streams from the unoccupied accurately.

B. Accuracy vs the Number of Antennas

The use of multiple antennas enables beam steering in
different directions. During the experiments we used up to 4
antennas to steer the beams. Here we analyse the influence of
the number of antennas on the performance of our approach by
disregarding data from some of the antennas, hence effectively
varying the number of antennas exploited.
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Fig. 9: (a) The effect of the number of antennas on human
count estimation error. (b) The relatonship between dispersion
in the data and human count estimation error.

Fig. 9a illustrates the cumulative human count estimation
error of both CAMPAIGN-I and CAMPAIGN-II against the
increasing order of actual human count Hc. As expected,
4 antennas provide the lowest cumulative error over all ex-
periments. Comparatively, 3 antennas provide a lower error
compared to 2 and 1 antennas. The difference between the
cumulative error of 1 & 2 antennas compared to 3 & 4
antennas begin to widen from Hc ≥ 3. Whereas, the difference
between the cumulative errors of 3 and 4 antennas widen from
Hc ≥ 5. This provides an estimate on when the system starts
to break in terms of estimating the human count when different
number of antennas are used.

C. Accuracy vs Dispersion in the Data

We analyse how the amount of dispersion in the measure-
ments affects the human count accuracy. Fig. 9b illustrates the
relationship of absolute error |Hc− H̃c| and dispersion for all
experiments in CAMPAIGN-II. We use standard deviation as
the measure of dispersion and apply the standard deviation on
R(θm) (we do not apply spatial filtering here). As expected,
the standard deviation is lowest when Hc = 0. Even though
max(|Hc−H̃c|) = 3 occurs when Hc = 4, 5 or 6, the standard
deviation is < 0.1 in 4 out of 5 occasions. The maximum
standard deviation occurs at Hc = 2 which highlights the
fact that our algorithm performs irrespective of the amount of
dispersion in the data.

D. Comparison with the State of the Art

We compare the performance of our human count estimation
with an estimation of human count via the the statistical
features utilized by FreeCount [3], a state of the art crowd
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counting algorithm for CAMPAIGN-II. The features we ex-
tracted from the correlation amplitudes (|R(θm)|) at Eq. 3
(we do not apply spatial filtering here) are mean, min, max,
standard deviation, median, entropy, 1st, 2nd, 3rd and 4th order
moments. The features are extracted from 64 experiments in
CAMPAIGN-II. As each experiment (except the experiments
indexed 25-32 ) is repeated once, we use the original set as
the training set and the repeated set as the testing set in a
multiclass classification implementation.

Fig. 10 compares the performance of our work against
FreeCount. We plot the cumulative absolute error (y axis)
against the human count (Hc) (x axis) in 32 experiments.
As depicted, when Hc = 0, both approaches estimate the
human count accurately. However, as Hc increases from 1
to 3 we begin to see the gap between the curves widening.
When Hc > 4, the gap further widens resulting in a maximum
cumulative error difference of 12. This indicates the robustness
of our algorithm as the human count increases compared to
FreeCount. We also note that FreeCount uses a supervised
learning approach whereas we use non-supervised learning
for human count estimation which can be considered as a
competitive advantage of our approach.

E. Device-free Activity Extraction

Here we evaluate the performance of our approach to extract
activities. We use three position configurations in Campaign II
with with increasing difficulty. In Exp. A, two persons exist at
positions 2 and 10. The person at position 2, performs a gesture
with 7 repetitions and the person at 10 performs squatting. In
Exp. B, two persons are placed at 2 and 5. The person at
2 performs gestures with 7 repetitions and the person at 5
crawls in the area continuously. In Exp. C, three persons exist
at positions 2,3 and 4. The person at 2 performs jumping, the
person at 3 performs squatting and the person at 4 performs
the gesture with 7 repetitions. Fig. 11a illustrates the amplitude
fluctuations detected from a single antenna (single antenna is
shown for space limitations) for the three experiments (Exp.
A: top, Exp. B: middle and Exp. C: bottom).

Fig. 11b illustrates the extracted gestures from the three
experiments highlighted in the grey area. The 7 gestures from
Exp. A are clearly detected in the top figure with all 7 of
them having the same pattern. From Exp. B, 6 out of the
7 gestures can be extracted as shown in the middle plot.
From Exp. C, again the 7 patterns can be observed. From the

three experiment setups, Exp. B gesture patterns have the most
inconsistencies compared to each other, while Exp. A gestures
are the most consistent. Exp. C gestures can also be identified
but not as clearly as in Exp. A. Here we conjecture that,
Exp. B gestures have been difficult to extract mostly because
the other person is performing continuous activities. If the
corresponding raw amplitudes are analyzed from Fig. 11a, we
can observe that those are mostly high frequency motion (e.g.
1.875 s - 3.75 s and 9.375 s - 11.25 s show rapid fluctuations )
compared to the other two experiments. Finally, Fig 11c shows
the effect on the extracted patterns when the H̃c has an error.
Here the patterns are extracted by varying the estimated count
up to H̃c = [1, 3] in top and middle figures while it is varied
till H̃c = [1, 4] in the bottom figure. However, the results do
not show significant deviation from the correct pattern when
human count estimation is varied.

IX. DISCUSSION

The proposed human counting and activity recognition
solution relies on the beamsteering capabilities of the receiver
which relies on accurate steering vector calculation. Even
though, new wireless standards such as IEEE 802.11ac, ax and
5G support such capabilities, currently there is no commodity
hardware that can be utilized for our purpose. Therefore,
we use USRP hardware for this work. However, with the
current expansion of research on device-free human sensing,
we expect chipset manufacturers to expose such capabilities
in a wide range of products.

We note that the accuracy of our training-free crowd count-
ing approach started to degrade when the number of human
subjects exceeded four. As the number of receiver antennas
deployed were four and this has a correlation with people
counting accuracy, we will, in further investigations, study
settings with 8 and 16 antennas in order to increase the
directional resolution and the count of people. If two persons
happen to be in a straight line, e.g. in direct line of sight of TX
and RX, in the current configuration, the system detects them
as a single person. We note that this type of situations can
be mitigated by using spatially separated multiple receivers.
Another limitation is that the human count is estimated based
on the motion patterns of people. If a person is completely
static, this could imply that the respective stream is vacant.
This can be solved by using respiration detection techniques.

X. CONCLUSION

We have reported on a device-free multiple human sub-
ject recognition approach exploiting multi-antenna reception
devices having beamsteering capabilities. Leveraging obser-
vations from practical experiments, we develop methods to
count people and extract individual activities in an ad-hoc
manner. The people counting approach has been compared
to a state-of the art algorithm on the same dataset and
clearly outperforms the prior approach. This, in particular, is
because our approach is less susceptible to interference due to
movements from spatially distributed multiple subjects in the
environment. Finally, we could demonstrate that the extraction
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Fig. 11: Recovering activity patterns of a person through blind source separation, (a) mixed patterns, (b) recovered patterns
when H̃c = Hc and (c) pattern recovery at H̃c = 1, 2, 3, or 4 when (top) H̃c = 2, (middle) H̃c = 2 and (bottom) H̃c = 3.

of activity patterns is possible through blind source separation.
The data we recorded in our study is openly available to ease
comparison of future algorithms with our approach.
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