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ABSTRACT
Channel State Information (CSI) obtained from commercial
Wi-Fi chipsets has proven to be efficient in detecting hu-
man interaction with radio waves. However, there is a lack
of analytical modelling to define the impact of human pres-
ence on multidimensional CSI vectors. Existing approaches
include linear, parameter-less techniques to reduce signal
space dimensions and filter noise by assuming linear cor-
relations among sub-carriers.

In this work, we first model the human presence and then
analyse occurrences of non-linear correlations among sub-
carriers. We then exploit these correlations by introducing
non-linear techniques to reduce CSI dimensions and filter
noise. These techniques offer adjustable parameters that
enhance signal quality depending on the environment and
the amount of human interaction. We analyse the perfor-
mance of human presence detection using the introduced
techniques with just two transceivers. Our results show that
when human motion is insignificant or occurs far from the
link, non-linear techniques improve the detection accuracy
up to 5 % compared to the linear approach.

CCS Concepts
•Hardware → Signal processing systems; Wireless de-
vices; •Networks → Wireless access points, base stations
and infrastructure;
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1. INTRODUCTION
Information on human presence in buildings plays an im-

portant role in controlling energy consumption of Heating
Ventilating and Air Conditioning (HVAC) and lighting sys-
tems. Detection of human presence is also critical for build-
ing surveillance, automation, assisted living services and the
likes. Furthermore, it is a key element in providing higher
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level contextual information such as locations, activities,
gestures and identities in indoor environments.

Among the traditional technologies that detect human
presence, Passive Infra-Red (PIR), cameras, CO2 sensors,
and radio waves are popular approaches [1, 2]. However,
PIR sensors experience low range, require multiple sensors
to achieve a reliable detection and the detection accuracy is
low for static persons. Cameras are intrusive of privacy [3]
and have issues in penetrating walls, darkness and smoke [4].
CO2 sensors have particularly slow response time. Technolo-
gies such as radar, ultrawideband and Wi-Fi Channel State
Information (CSI) obtained through SDR-based solutions
are reliable but expensive.

The popularity of approaches that measure Received Sig-
nal Strength (RSS) by narrowband radio devices is due to
cost effectiveness and ubiquity. However, recent progress in
signal descriptors, such as CSI, obtained through low cost
IEEE 802.11n chipsets offer enhanced accuracy compared to
RSS. Due to high temporal variance in RSS, slow movements
of humans end up hidden in the inherent signal variabil-
ity [5]. Comparatively, the structure of CSI is temporally
more stable than RSS because it captures small-scale mul-
tipath propagation over multiple sub-carriers in frequency
domain [6, 7]. CSI indicates different physical qualities of
the channel such as shadowing, frequency selective fading,
multipath propagation and effects of interference. Hence,
CSI is currently a good alternative for RSS.

Compared to traditional technologies, CSI-based detec-
tion has sevaral advantages. It detects humans through
walls, does not depend on lighting, preserves user privacy,
and importantly, occupants are not required to carry any
devices. Hence, it is widely used to quantify the human
presence interaction with the wireless channel in the form of
occupancy detection, activity/gesture/identity recognition
and human positioning.

Prior work and their limitations. Currently, models for
human influence on RSS amplitude variations exist for nar-
rowband radio devices. However, models that characterise
sub-carrier level amplitude variations in CSI are non-existent
to the best of our knowledge. Previous human presence de-
tection schemes assumed that CSI sub-carriers are corre-
lated in the empty environment. They also assumed a loss
of correlation with human presence. Therefore, reduction of
CSI dimensions was performed using linear methods such as
eigen-decomposition of the CSI correlation matrix. These
techniques are parameterless and adapting them to different
environments with different noise profiles is a difficult prob-
lem to tackle. Especially when the human is mostly static,
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these approaches can have low detection effectiveness.

Contributions. The specific contributions of our work are:
(i) we provide a model to characterise sub-carrier amplitude
variation of the CSI with human presence. Using this model
we explain the non-linearities that can occur in CSI under
the influence of humans. (ii) We introduce a novel dimen-
sionality reduction and noise filtering scheme. We exploit
the identified non-linearities in CSI under human influence
and use a non-linear technique, kernel Principal Component
Analysis (kPCA), to reduce dimensions. kPCA kernels offer
adjustable parameters that help in reducing noise to suit
different environments. (iii) Furthermore, we focus on a
mostly static occupant and achieve enhanced detection accu-
racy for humans with small movements using just two Wi-Fi
transceivers.

The remainder of this paper is organised as follows. Sec-
tion 2 provides a summary of existing CSI-based human
presence characterization models and human presence de-
tection techniques. Section 3 introduces our model which
defines CSI amplitude variation due to human motion. In
Section 4 we introduce our technique on CSI dimensional-
ity reduction and our human presence detection scheme. We
then describe our experimental environment, data collection
and evaluation of our presence detection scheme in Section 5.
We discuss the scope and limitations of this work in Section 6
and provide our conclusions in Section 7.

2. RELATED WORK
As our paper introduces a model and a detection technique

for human presence, this section is divided into two parts to
address the current relevant state of the art considering these
two aspects.

2.1 Models on Human Presence
There is a lack of models in the literature to represent

the effect of human presence on CSI amplitude and phase.
However, human presence models that have been developed
for other narrowband devices using RSS can be adapted to
model CSI fluctuations. Among RSS-based models, Patwari
and Wilson [8, 9] introduced a link centric, statistical model
to express RSS variation detected with narrowband devices
as a function of a person’s position. They separated total
received paths as affected and unaffected and derived ex-
pressions for the total affected power due to affected paths.
Among CSI-based models, Omni-PHD [6] extended the link
centric model to a near disk like coverage model around the
receiver using CSI as the measurement. The authors de-
termined whether a person is within a near-disk region or
not, with similar confidence levels. CARM [10] introduced a
link centric, deterministic model to characterise the human
movement speed on CSI for activity recognition by separat-
ing the affected and unaffected components.

Our work is different to these approaches in that we char-
acterise the variation of CSI amplitude of each sub-carrier
depending on a human’s position using the affected and un-
affected components.

2.2 Human Presence Detection Schemes
Previous device-free human presence detection approaches

that use CSI as the signal descriptor are twofold: threshold-
based and fingerprint-based.

Fingerprint-based. In this approach, a distance measure
between a CSI fingerprint during human motion and the un-

occupied room characterises human availability. Pilot [11]
measured the cross-correlation as the distance measure, and
[12] extended it to an adaptive method depending on the
environment. In [13] grey relational analysis was used to
measure the distance. Omni-PHD [6, 14] used a statistical
approach and the fingerprint is a histogram of CSI ampli-
tudes where Earth Mover’s distance [15] measures the dis-
tance between unoccupied and occupied histograms. The
intuition in these methods is that the affected multi-paths
due to human motion would create enough perturbations in
CSI vectors to reduce the similarity between unoccupied and
occupied fingerprints.

Threshold-based. Threshold-based approaches exploit the
high linear temporal correlation among CSI amplitudes for
an unoccupied room. They distinguish the occupied room
assuming a loss of correlation in CSI due to temporal ampli-
tude variations. These techniques perform eigen decompo-
sition on the CSI correlation matrix for two reasons, (i) to
reduce the dimensions and noise in CSI, and (ii) to separate
the unoccupied room from the occupied with the intuition
that eigenvalue variation indicates motion. FIMD [7] first
leveraged the correlation among sub-carrier amplitudes to
detect human motion. They used first and second eigenval-
ues to separate the unoccupied room from the occupied using
a threshold. PADS [16] and DeMan [17] extended the mo-
tion detection to phase and amplitude of CSI by assuming
linear correlation among sub-carriers. They used the first
eigenvalue of both amplitude and phase and determined the
threshold of unoccupied and occupied scenarios in these two
cases by a support vector machine classifier. Although these
methods were using the first eigenvalue in detection, it was
later proved to be unreliable due to burst noise [10]. This
can hinder the detection accuracy especially when humans
are static. Nonetheless, these schemes were focusing mainly
on detecting a moving person.

In DeMan [17] a static occupant was detected through
their breathing. It uses the power spectral density of subcar-
rier amplitudes and identifies frequencies related to breath-
ing. However, this approach is constrained by the detection
range due to transmit power limitations.

Similar to the above, we perform threshold-based detec-
tion using eigen-decomposition. However, we try to solve
the problem by exploiting non-linearities among sub-carriers
and we are different to the rest in three aspects, (i) we use
our model to first explain the non-linearities caused by hu-
man presence and then we exploit them in our dimensional-
ity reduction technique, (ii) our techniques are parameter-
based, so they are adaptable to different environments, and
(iii) we focus on detecting a person who is mostly static
resembling real world situations.

3. MODELLING HUMAN PRESENCE
In this section, we initially provide an introduction to

Channel State Information (CSI) then we present our model
and its validation. Then we use the model to explain the
non-linearities in CSI.

3.1 CSI Preliminaries
In wireless radio propagation, radio waves arrive at the re-

ceiver over multiple paths due to reflection, diffraction and
scattering caused by objects in the environment. The re-
ceived signal can be characterised by channel impulse re-
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Figure 1: The behaviour of affected and unaffected paths due to
human influence.

sponse h(t; τ) [18],

h(t; τ) =

M−1∑
i=0

ai(t)e
jφδ(t− τi(t)) (1)

where ai(t) is the amplitude of the ith path, φi is the total
phase shift caused by physical propagation phenomena such
as reflections and diffractions, τi(t) is the time varying delay
of ith path and M is the number of paths. However, due to
bandwidth limitations, Wi-Fi receivers can only distinguish
clusters of multipath components [19].

The frequency domain representation of h(t; τ) is the chan-
nel frequency response H(t; f) [10, 20]:

H(t; f) =

M−1∑
i=0

ai(t)e
jφie−j2πfτi(t) (2)

Wi-Fi devices that operate in IEEE 802.11a/g/n/ac use Or-
thogonal Frequency Division Multiplexing (OFDM) as the
modulation scheme with multiple sub-carriers in a Wi-Fi
channel to send data. The receiver measures a discrete
Channel Frequency Response (CFR) in time and frequency
as phase and amplitude in the form of CSI for each antenna
pair:

H(t; f) = [H(t; f1),H(t; f2) . . . H(t; fn)] (3)

where H(t; fi) = ||H(t; fi)||ej∠H(t;fi) and n is the number
of sub-carriers.

3.2 Modelling the CFR in Human Presence
The purpose of this section is to model and derive expres-

sions for amplitude measurements ||H(t; fi)|| of CSI sub-
carriers obtained from the IWL 5300 Wi-Fi chipsets that
depend on a person’s position.

The effect of human presence on radio waves can be clas-
sified into two groups as unaffected : paths that are not af-
fected by the person, and affected : paths that have changes
in amplitude, phase and delay due to human presence and
new paths that are generated due to scattering and reflec-
tion off the person. This behaviour is illustrated in Figure
(1). Hence, the resultant channel in eq. 2 can be expressed
as just two components, as unaffected Hu(f) and affected
Ha(t; f) [9, 10]:

H(t; f) = Hu(f) +Ha(t; f) (4)

Hu(f) consists of N unaffected paths. We assume the un-
affected paths to have fixed lengths, the amplitude ai and
phase φi − 2φfτi are time invariant:

Hu(f) =

N−1∑
i=0

aie
jφie−j2πfτi (5)

Ha(t; f) consists of M −N affected time varying paths:

Ha(t; f) =

M−1∑
i=N

ai(t)e
jφie−j2πfτi(t) (6)

As human movements cause affected path lengths to change,
amplitudes and phases of these paths are time varying.

Modelling the unaffected component. The unaffected
component, Hu(f) in our work is modelled as follows. Hu(f)
consists of largely the specular Line of Sight (LoS) paths and
the paths resulted from reflections and scattering off static
objects. Hence, we approximate Hu(f) by the CSI observed
in the absence of a person in the room, He(f) with amplitude
ae(f) and phase φe(f):

Hu(f) ≈ He(f) = ae(f)ejφe(f) (7)

Modelling affected component. Modelling of the unaf-

fected component in our work is done as follows. Due to
peculiarities of human bodies, the set of affected paths can
consist of a single Ns = 1 or multiple Ns > 1 specular paths
and a collection of diffused paths Nd � 1 with small ampli-
tudes and random phases. For simplicity, we assume that
there is a single specular path with amplitude as(t) and de-
lay τs(t), which is reflected by the person. To account for the
variations caused by the diffused paths, as(t) can be mod-
elled as a Rician random process. Furthermore, we assume
that the occupant does not obstruct the LoS paths. LoS
obstructions cause high variations in the sub-carriers due to
shadowing and diffraction. These effects are not considered
here because we are more concerned about the effect on the
CFR due to subtle indirect movements. Therefore, eq. 6
reduces as follows:

Ha(t; f) ≈ as(t)e−j2πfτs(t)+jφs (8)

In reality, Ha(t; f) is a time varying result of body scattering
and/or reflections that depend on the position of the person.
Therefore, by applying Friis path loss equation, the specular
amplitude as(t) of the reflected paths can be modelled as [8]:

as(t) =
kd0
√
Prx

||xtx − x(t)||+ ||xrx − x(t)|| (9)

where d0 is the link length, x(t) is the coordinate of the
person, xtx and xrx are the coordinates of the transmitter
and the receiver and k is the reflection loss and Prx is the
received power. Due to the person’s trajectory, phase shift
caused by change of the reflected path length fτs(t) in eq.
8 can be written as:

fτs(t) =
f × (||x(t)− xt||+ ||xr − x(t)||)

c
(10)

where c is the speed of light.

Amplitude response model. From eq. 7 and eq. 8 we
obtain the overall channel frequency responseH(t; f)and our
intended result ||H(t; fi)|| by substituting the sub-carrier
frequencies fi. Therefore, the amplitude response ||H(t; fi)||
of the ith sub-carrier with AWGN noise N(o,σamp) is:

||H(t; fi)|| =
[
a2e(fi) + a2s(t)+

2ae(fi)as(t) cos
(
2πfiτs(t) + φse(fi)

)] 1
2

+N(o,σamp)

(11)

The implementation of CSI in the IWL 5300 chipset does
not include noise measurements on a per sub-carrier basis



Table 1: Model Parameters.

Parameter Value Parameter Value

TX rate 1000 pkts−1 TX power 15 dBm
Human speed 0.8 ms−1 Duration 5 s
Link length (d0) 5 m SNR 100 dB
Reflect. attn.(k) 6 Channel BW 20 Mhz
Carrier freq. 5.32 GHz Antennas 1× 1

[21], so we assume that the noise floor is uniform across all
sub-carriers. Through CSI amplitudes received during the
presence and absence of a person in a real world experiment,
the amplitude response of the above model can be validated.
We provide our validation procedure in Section 3.3.

The phase response is not verifiable from the current state
of CSI provided by the IWL 5300 chipset. These off-the-shelf
WiFi devices produce Carrier Frequency Offsets (CFO) due
to small carrier frequency differences in the transmitting and
receiving radios leading to phase randomness in CSI among
successive packets [10, 22]. Although there is a calibration
method to overcome phase randomness, the actual phase is
not recoverable through this approach [23].

3.3 Model Validation
To validate the model’s behaviour during the presence of

a single person, we carried out an experiment where a per-
son moves towards the direct LoS link in a perpendicular
trajectory from 4 m away. As shown in Figure 2, the per-
son’s movement is important in this case to understand its
impact on sub-carrier amplitudes. Since we assume a con-
stant reflection attenuation (k) of the reflected path, the
best movement to achieve a sufficiently constant reflection
attenuation is walking perpendicular to the link where the
person’s chest is facing the link. The used model parameters
are summarized in Table 1. The impact of human motion
on sub-carrier 1 is compared to the real experiment results
in Figure 3. The top figure corresponds to the model result
and the bottom one represents the real fluctuations in the
sub-carrier.

In the experiment, the person starts his movement to-
wards the link from 4 m away at 0 s. When the person is far
from the link, the fluctuations in the sub-carrier are small
and have a high frequency, whereas closer to the link the
fluctuations are large and have a lower frequency. This is
caused by the length reduction of the reflected path as the
person moves in during this period. The model follows the
real pattern until 4.5 s. From there onwards, there is a large
difference between modelled and real values. This is due to
the shadowing of the LoS path by the human which is not
modelled in our case.

The amplitude of the real sub-carrier has high variations
compared to the modelled amplitude. This is caused by vari-
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Figure 2: Person’s position and trajectory during the experiment.
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Figure 3: Modelled (top) and real (bottom) sub-carrier amplitude
variation.

ation of the attenuated reflection (k) of the reflected path
due to movement. In the model, this attenuation is predeter-
mined through a training experiment and assumed constant
over time. The other discrepancy between the model and
actual result is the phase shift which is a result of a com-
bination of factors such as initial phase of the unoccupied
room φe(f), reflections and the fluctuation in human veloc-
ity.

In order to quantify the similarity between the real Hr
and the modelled Hm CSI matrices, we measured the cross
correlation, −1 < ρ(Hm,Hr) < 1:

ρ(Hm,Hr) =
cov(Hm,Hr)

σmσr
(12)

where cov(Hm,Hr) is the covariance between Hm, Hr and
σm, σr are the standard deviations of Hm and Hr respec-
tively. Both matrices are of size (30)×(TX rate×4.5) where
30 is the number of sub-carriers, TX rate = 1000 pkts−1 and
4.5 is the duration in seconds without the shadowing period.
We obtained a cross correlation of 0.9 between the two ma-
trices. We needed this model to understand the parameters
that affect the sub-carriers due to human influence. Hence,
for the mentioned purpose, this accuracy is quite adequate.

3.4 Sources of Non-Linearities
In this section, we argue that most sub-carrier ampli-

tudes have a non-linear temporal correlation that originate
through several sources. We use our model in eq. 11 to iden-
tify those sources.

The main sources of non-linearities are: (i) human mo-
tion, expressed through as(t) and τs(t) (ii) the amplitude
ae(f) and phase φe(f) of the channel frequency response of
the empty environment (higher non-linearities can occur in
a cluttered environment due to an increase of peaks and val-
leys in the amplitude response caused by multipath propaga-
tion) (iii) measurement duration t. If multiple antennas are
used, sub-carriers across these antennas also tend to get non-
linearly correlated as the measurement duration increases.
To a lesser extent, this is true for the sub-carriers among
same antenna as well. Additionally, amplitude and phase
response of each sub-carrier is non-linearly correlated.

We verify these findings from the data collected during
the experiment for model validation in Section 3.3. As an
example, the correlation matrix H of size 90 × 90 (90 sub-
carriers from 1 × 3 antennas) of the measured data can be
calculated as:

H = XXT (13)

where X is the observation matrix of size 90 × Ns. Ns is
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Figure 4: The top row represents the correlation matrix of
the unoccupied room Hempty and the bottom one corresponds
to the correlation matrix at human presence Hoccu. Ns =
1000i, 2000i, . . . 5000i, where i is the column index.

the number of samples from the experiment we used to vali-
date the model and it represents the measurement duration
t, Ns = t × TXrate. The results of the calculation are il-
lustrated in Figures 4a and 4b for unoccupied and occupied
rooms respectively.

As observed in the figures, the occupied room loses the
correlation after 2 s (Ns = 2000). The highest correlation
in the occupied room is mostly concentrated among nearby
sub-carriers of the same antenna which corresponds to the
yellow colour in the bottom five figures. Additionally, as
Ns increases, the non-linearities increase, whereas for the
unoccupied room, sub-carrier correlation is almost constant
over time. The dark brown coloured lines in the unoccupied
room figures correspond to the valleys in the CFR ampli-
tude. Therefore, the more cluttered the environment, the
more valleys we can observe, which results in non-linearities.

4. DIMENSIONALITY REDUCTION AND
HUMAN PRESENCE DETECTION

In this section we devise a system to efficiently exploit
the non-linear correlations among the sub-carriers that were
mentioned in Section 3.4 in order to reduce the dimensions,
filter noise and detect human presence.

4.1 System Overview
The system architecture of our detection scheme is illus-

trated in Figure 5. As shown, when CSI is extracted from
the packets received through the link, we first linearly inter-
polate them to account for packet losses and achieve a fixed
rate. Then, nonlinear dimensionality reduction, specifically,
kPCA is applied to this data and obtain a single tempo-
rally fluctuating signal by selecting the optimum principal
component and its respective eigenvalue. Finally, presence
detection is performed by setting a threshold to this eigen-
value depending on the environment.

4.2 Linear Approach: PCA
For a Wi-Fi data packet received by a single antenna pair,

a CSI amplitude vector provides 30 × 1 dimensions. An
IEEE 802.11n implementation can use up to 3 × 3 antenna
pairs where dimensions of a CSI data point can reach up to
270 × 1. It is a cumbersome process to set 270 thresholds
for each dimension in order to distinguish the unoccupied
room from the occupied. Besides, each CSI sub-carrier con-
tains noise, which also requires filtering. Hence, we require
a mechanism to successfully reduce the dimensions or iden-
tify the highest varying dimensions. Additionally, the re-
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Figure 5: Human presence detection scheme. System overview.

duced dimensions also need to contain less noise. A method
used in the literature to achieve this assuming linear cor-
relation among sub-carriers is principal component analysis
(PCA) [10]. Although PCA is not part of our work, we ex-
plain it here briefly because our approach in Section 4.3 is a
generalisation of this technique.

Mathematically, the number of CSI amplitudes Nobs ob-
tained from Nobs packets can be expressed as a D × Nobs
matrix X, where D is the number of subcarriers. PCA as-
sumes that rows of this matrix are linearly correlated. It
then linearly transforms the rows to a new orthogonal co-
ordinate system. This is done by eigendecomposition of the
correlation matrix KPCA of X:

KPCA = XTX = VΛV−1 (14)

Eigenvectors {vi ∈ RNobs | i = 1, 2, . . .D} form the new
directions of the coordinate system. The variances of the
new directions are captured by the eigenvalues {λi ∈ R |
i = 1, 2, . . .D} where λ1 has the highest variance. Principal
Components (PCs) yi, where yi = KPCA×vi are the coordi-
nates of the new data points. Since the first PC, y1 contains
the majority of variation in the signal, it has a higher signal
to noise ratio. Therefore, using the variance/eigenvalue of
this PC or another PC that has the signal portion, we can
separate the unoccupied room from the occupied.

4.3 Non-Linear Approach: kPCA
We use kPCA [24] in our work to exploit the non-linear

correlations in CSI. kPCA first transforms the data to a
higher dimensional space and then performs the eigendecom-
position to reduce the dimensions as in the previous section.

This is achieved by a non-linear transformation of the orig-
inal data {xi, xj ∈ RD | i, j = 1, 2, 3, ...,Nobs} into a feature
space F using a function φ:

φ : RD → F , x→ X

The feature space F can be of a very high dimensional-
ity. Therefore, without explicitly knowing the transforma-
tion function φ, Mercer kernels [25] can be used to trans-
form the data [25]. Using a Mercer kernel is analogous to
knowing the dot product of the transformed data points
Kij = κ(xi, xj) = φ(xi) · φ(xj), K : RD ×RD → R.

Kernels that have been useful in kPCA include Gaussian
and polynomial kernels [25]. In this work, we use both these
kernels to non-linearly transform our data to a higher di-
mension. In Sections 4.3.1 and 4.3.2 we explain the reasons
for selecting them and the transformation procedure. After
transforming the data using the selected kernel, eigendecom-
position is performed similar to linear PCA to obtain the
principal components and the respective eigenvalues. We
implemented this according to the procedure mentioned in
[26].

After sorting the eigenvalues and respective principal com-
ponents in descending order of the eigenvalues, we choose



the best PCs for human presence detection. The selection
procedure and actual detection is explained in Section 4.4.

4.3.1 Gaussian Kernel
In this section, we explain the reasons for choosing this

kernel and how the parameters were tuned to suit our data.
eq. 15 represents the Gaussian kernel used in this work:

κ(xi, xj) = e−
||xi−xj ||

2

σ (15)

where σ is the standard deviation which is a tunable param-
eter, and ||xi − xj || is the Euclidean distance between two
data points xi, xj . This is the most commonly used non-
linear kernel in kPCA and here we summarize the reasons
for selecting it:
1. Frequency domain representation of the Gaussian ker-

nel is also Gaussian, so it does not introduce high fre-
quency non-linearities. Hence, it provides smooth prin-
cipal components through transformation [27]. There-
fore, when expert knowledge about the non-linearities
is lacking, the Gaussian kernel offers a reliable solution
under general smoothness assumption.

2. The width of the Gaussian kernel σ can be adjusted
depending on the type of data to filter out noise, which
will be explained below.

Parameter optimisation. The standard deviation σ of
the Gaussian kernel was optimised for our data as follows.

We ran a set of experiments for two different types of
scenarios, e.g. unoccupied and occupied room as described
in Section 5, in order to show how we determine σ for the
Gaussian kernel. We obtained two data sets of size 3000, one
each for unoccupied and occupied room experiments. Then
we plot the Gaussian transformation of median Euclidean
distance of both data sets and plot them in Figure 6 against
the standard deviation σ. The figure illustrates the variation

of f(σ) vs. σ where f(σ) = e−
Md(||xi−xj ||

2)

σ and Md(||xi −
xj ||2) is the median Euclidean distance of 3000 data points.

The median Euclidean distance is considered instead of
the mean because it is better in describing the central ten-
dencies of the two data sets when the distribution of Eu-
clidean distances are skewed. Unoccupied room data points
usually have a low Euclidean distance because this environ-
ment causes low perturbations in the signal and these per-
turbations are predominantly caused by noise. Therefore,
if we have a fixed σ for the two data sets, the Gaussian
transformation of the Euclidean distance of the unoccupied
room data gives high variations compared to the occupied.
Hence, we require a mechanism to update σ depending on
the nature of our data.

From Figure 6 we know that median Euclidean distance
Md(||xi − xj ||2) provides some hint on the nature of data.
From eq. 15 we also know that when σ is high, a data point
after Gaussian transformation has larger influence on neigh-
bour data points leading to low variation and noise in the
principal components. On the other hand, when σ is low,
data points have less influence on neighbour data points and
this causes high variation and noise in the principal compo-
nents. Hence, depending on the median Euclidean distance
of the data, we can set a threshold, Eudth to separate low
Euclidean distances from high ones so that the low ones cor-
respond to the unoccupied room. Depending on the thresh-
old, we can set σ to a higher value (saturate region of the
unoccupied f(σunoccu) curve in Figure 6) for the unoccupied

room to suppress high variations. Since a high σ value for
a data point has larger influence on neighbour data points,
it cancels out the noise. To highlight variations in the oc-
cupied room, σ is set to a value (in the linear region of the
occupied f(σoccu) curve in Figure 6) for Euclidean distances
exceeding Eudth.

4.3.2 Polynomial kernel
Eq. 16 describes the polynomial kernel used in kernel PCA

where c and d are two adjustable parameters:

κ(xi, xj) = (xTi xj + c)d (16)

The linear kernel used in PCA is a subset of the polyno-
mial kernel. The polynomial kernel can be transformed to
either linear or a higher order polynomial depending on the
type of data by adjusting the parameter d in eq. 16. Higher
order polynomials amplify higher amplitudes in the signal
and suppresses lower amplitudes such as noise. However,
unlike the Gaussian kernel, a polynomial kernel can distort
the principal components through the transformation. Ad-
justing the parameters such as c and d, these distortions
can be minimized. Below we show how the parameters are
selected for the polynomial kernel in our approach.

Parameter selection. For the polynomial kernel in eq. 16
there are two parameters that can be adjusted (c, d). For
the choice of d, we kept d = 2 so that this becomes a second
order polynomial. For higher order polynomials we obtain
very high eigenvalues and principal components especially
when the occupant is moving. The computation time of
higher order polynomials are also high. Therefore, eq. 16
reduces to:

κ(xi, xj) = (xTi xj + c)2 = (xTi xj)
2 + 2cxTi xj + c2 (17)

When the parameter c is high there is increased weight for
lower order values, e.g., 2cxTi xj which provides a smooth
signal for both occupied and unoccupied rooms. When c is
low, the weight on higher order values are high resulting in
high peaks for the principal component when the occupant
is moving. In our case, we set c = Md(xTi xj) of data points
of size Nobs so that we achieve a balanced signal without
unnecessary peaks.

4.4 Human Presence Detection
In Section 4.3 we identified the highest varying principal

components from the eigendecomposition of Gaussian and
polynomial kernel transformed data. The purpose of this
section is to determine the best PC and the respective eigen-
value and determine a threshold to detect human presence.

After applying kPCA, as mentioned in section 4.3 we ob-
tain more dimensions than the original ones. We do not
know how many PCs carry the signal component and how
many PCs are just noise. To separate the signal compo-
nents from the noise, we use a scree plot as in Figure 7. It
plots the amplitude of each eigenvalue with its index. The
point where the steep curve ends (marked with a red dashed
line in the figure) is considered to be the last point where
the signal portion is carried. For the particular case in the
figure, the first four PCs can be selected as the best.

In both PCA and kPCA, PC1 corresponds to the highest
eigenvalue and captures the highest variance of the signal.
However in CSI, the first principal component is unusable
due to high noise. The reason is that PC1 of the unoccupied
room has high variation which reduces the overall signal to
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Figure 8: PCs of the empty room.

noise ratio of the occupied and unoccupied rooms. As an ex-
ample, Figure 8 shows the temporal fluctuations of PCs 1
and 2. PC1 indicates a signal with multiple levels whereas
PC2 consists of a single level. We argue that these multiple
levels are a result of multiple peaks and valleys of the CFR
caused by frequency selective fading. Even though we sub-
tract the mean of each subcarrier prior to applying kPCA,
the mean subtracted CSI contains high variation in the sub-
carriers with peaks and low variation at valleys leading to
multiple levels in PC1.

Therefore, for human presence detection, the best PC out
of the above four PCs are chosen based on the maximum
eigenvalue ratio Λmax of empty and occupied scenarios:

Λmax = max
k

λk,occu
λk,empty

where k = 1, 2, . . .m (18)

PCs 2 and 3 tend to maximize this ratio due to high signal
power and low noise in those PCs. In Section 5.3.1 we show
that the performance of PCs 2 and 3 vary depending on the
noise profile of the environment.

After selecting the best principal component for detection,
separation of the empty scenario from an occupied scenario
must be performed for the test data. This is done by set-
ting a threshold for the training data obtained during the
absence of a person in the unoccupied room. This thresh-
old λth corresponds to the highest eigenvalue of the selected
principal component from n intervals of the training period:

λth = max
i

(λi,empty), where i = 1, 2, . . . ,n (19)

If an eigenvalue of test data exceeds this threshold, it is
counted as a detection.

5. EVALUATION
In this section we explain our experimental environment,

execution of the experiments and the obtained results.

5.1 Experimental Setup
The experiments were performed at a research lab in our

centre and the floor plan is given in Figure 9. We collected
data from two experiments A, B corresponding to the link
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Figure 9: Floor plan of the lab. The two laptops operate as the
transmitter and the receiver.

types between the transmitter and receiver, i.e., A - LoS, B
- NLoS. In experiment B the LoS link is blocked by multiple
15 inch computer screens. In each experiment, we collected
data for three scenarios: (i) unoccupied room (serves as
reference data), (ii) a stationary person, and (iii) a walking
person.

For the experiments (both LoS and NLoS) involving a
stationary person, 12 different positions were chosen as in-
dicated in Figure 9. In the figure, positions are marked with
sij where i is the row number and j is the column num-
ber. During this experiment, the person stays for a while
in each position and is involved in subtle movements with
regular pauses. In the experiments with a walking person,
two scenarios are considered. In one of them, the person is
not obstructing the LoS link (we name this scenario as nld)
and in the other, the person’s path crosses the link (ldn).

The transmitter and receiver of the experimental setup
consists of two laptops, ACER 5740 and Lenovo Thinkpad
L520 Both run Ubuntu version 14.04. Each of them is
equipped with three external antennas. We installed a Wi-
Fi card with the IEEE 802.11n IWL 5300 chipset, modified
driver and firmware in the two laptops to function as the
transmitter and receiver in our work. Both Wi-Fi cards
in the two laptops were programmed to operate in moni-
tor mode, which is one of the Wi-Fi modes provided by the
IEEE 802.11n standard to sniff packets in a particular chan-
nel. We leveraged the CSI Tool [28] to analyse the data
received from the chipset.

5.2 Execution
In this section we explain how we collected data from the

two experiments and how we performed the dimensionality
reduction and human presence detection using those data.

Altogether there were 32 measurement sets gathered for
experiment A and B, each experiment consisting of 16 sce-
narios (12 static, 2 dynamic and 2 reference). We use the
two reference data sets to calculate false positives. For each
scenario, the transmitter was programmed to send packets
for 60 s at 1000 pkts/s using injection scripts provided by the
CSI Tool. Hence, data is collected for a total of 16× 2 sce-
narios amounting to a total duration of 32 minutes. To avoid
interference from other devices, all measurements were col-
lected in channel 64 which is a 20 MHz Wi-Fi channel with
centre frequency 5.32 GHz. The parameters used in the ex-
periments are provided in Table 2.

The transmission rate of 1000 pkts/s leads to a two dimen-
sional observation CSI matrix of size (30×Ntx×Nrx)×(Nobs)
where Nobs = 60000 for each scenario. If the observation
matrix is directly transformed to the kernel matrix which is
of size Nobs ×Nobs, applying PCA or kPCA requires heavy
usage of system memory as Nobs is too large. If Nobs is
too small, we lose the correlations in the data. Therefore,
we divided each scenario of 60 s to 20 continuous subinter-



Table 2: Experiment parameters for the selected scenarios.

Parameter Value Parameter Value

Environment Cluttered Antennas 3× 3
Exp. duration 60 s TX power 15 dBm
# of exp. 15 Channel BW 20 MHz
Link length 5 m Pkt TX rate 1000 pkts−1

Carrier freq. 5.32 GHz Nobs 3000

vals of 3 s containing a batch of Nobs = 3000 packets. Then
we performed kPCA separately on the 20 subintervals and
obtained 20 pairs of principal components and eigenvalues.
There is also a practical reason for choosing Nobs = 3000.
That is, 3000 packets correspond to 3 s which is a good re-
sponse time for an occupancy detection scheme.

Thereafter, for each batch of 3000 packets, we perform
kPCA with Gaussian and Polynomial kernels to determine
the eigenvalues, best principal components, and calculate
detection percentages. For the two environments A, B we set
the parameters for the Gaussian kernel explained in Section
4.3.1 as Eudth,A = 32, Eudth,B = 35 respectively, σunoccu =
f−1(.95) and σoccu = f−1(.7). A detection percentage for

an experiment is Ndet
Nint

× 100% where Ndet is the number of

intervals that exceeds the detection threshold and Nint is the
total number of intervals. As a comparison, we apply PCA
to the same data and compare the detection percentages for
the selected principal components in the following section.

5.3 Results Analysis
In this section, we quantify the True Positives (TP) and

False Positives (FP) of our presence detection scheme. Fur-
thermore, we assess the performance of the underlying di-
mension reduction techniques for static and dynamic per-
sons. Then we evaluate the impact of the selection of prin-
cipal component and observation interval (Nobs) on overall
detection accuracy.

5.3.1 Overall detection performance
For both Gaussian kPCA and PCA in experiment A the

best performing principal component in terms of detection
is PC 2. For polynomial kPCA, PC 3 has the best per-
formance. However, in Experiment B, PC 3 is consistently
providing good detection percentages. It can be argued that
the reason for this is the noise profile of the empty scenario
in the two experiments. Since the link in experiment B is
NLoS, the received signal is more noisy than in experiment
A, which is a LoS link. Hence in experiment B, PCs 1 and
2 capture this variance caused by high fluctuations in the
link. Therefore, we used PC 2 for human detection in Exp.
A and PC 3 for detection in experiment B. In Table 3, we
provide the average percentages of true and false positives
of all the 14 scenarios for the two experiments. On aver-
age, the Gaussian kernel has a better detection performance
because of high TPs and low FPs. The reason for false pos-
itives to be zero in most cases is that we set the threshold
λth the highest eigenvalue from the intervals of the reference

Table 3: Average detection percentages for Exp. A and B.

PCA G-kPCA p-kPCA

TP FP TP FP TP FP

A (PC 2 ) 88.3% 0% 90.6% 0% 62.6% 0%
B (PC 3 ) 83.3% 5% 88.3% 0% 62.6% 5%
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Figure 10: Scenario-wise detection percentages of experiments A
(top) and B (bottom).

unoccupied room data set as explained in eq.19.

5.3.2 Scenario-wise detection performance
Here we compare the performance of each technique un-

der true detection percentages for each scenario. Figure 10
provides the detection comparison of each technique scenar-
ios in experiments A (top) and B (bottom). We consider
14 scenarios, two dynamic (ndn, ldn) and 12 static as illus-
trated in Figure 9. Highest detection percentages in general
are for the two dynamic scenarios and for positions near the
link such as s12, s23,s32, s43, s52 and s53. Lowest detec-
tions are generally for positions far away from the link such
as s11, s21 and s41.

This behaviour can be explained as follows. When a per-
son is closer to the LoS, more paths get affected. The num-
ber of paths disturbed by the person far away from the link
are less and have weak amplitudes so they do not cause large
perturbations in CSI. For the two dynamic scenarios per-
formed in the experiments, the three techniques have ideal
detection rates. This highlights the fact that the selected
approaches are well capable of detecting human motion.

5.3.3 Performance for a static person
Here, we evaluate the detection accuracy for a static per-

son. The two plots in Figure 10 depict that Gaussian kPCA
has a consistent detection percentage in the static scenarios.
Especially for the NLoS link in experiment B, the detec-
tion performance is quite above the other two. This can
be attributed to the dynamic parameter adjustment for the
Gaussian kPCA which was explained in detail in Section
4.3.1. This can be further verified through the analysis of
PC2 (which is yi where i = 2 as calculated in Section 4.2).
As an example, the behaviour of PC 2 for a static scenario,
especially, for position s32 is illustrated in Figure 11.

In Figure 11 PC 2 of the Gaussian and Polynomial kPCA
are compared to PC 2 of PCA. Additionally, each figure
contains PC 2 of the unoccupied room as a reference. Since
the three plots have different scales due to the use of dif-
ferent kernels for transformation, they are normalised by
the maximum range of the occupied room’s respective PC.
The figures show that Gaussian kPCA has enhanced sig-
nal amplitude, whereas in the other two cases, the signal is
immersed in noise. The reason is the suppression of noise
through dynamic adjustment of σ in the Gaussian kPCA.
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Figure 11: Comparison of temporal variation in PC 2 of PCA, G-kPCA and p-kPCA for position s32 of experiment A.
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Figure 12: Detection percentage difference of PC 1 , PC 3 and PC 4 compared to PC 2.
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Figure 13: Impact of observation interval Nobs on detection.

This provides a consistently high amplitude during the pres-
ence of a person. Polynomial kPCA produces high ampli-
tudes when there is only significant motion. For example
in the 20 s and 30 s interval there is a sudden rise in varia-
tion. However, because we are comparing predominantly a
static person in this situation, there can be only occasional
movement that can cause large signal variations. Due to
this reason, the Gaussian kernel performs better than the
other two in mostly static situations. The Polynomial ker-
nel has the lowest detection percentage which signifies that
it requires further tweaking of its parameters.

5.3.4 Impact of the PC on detection
For experiment A, we selected PC 2 to detect a person.

Here, we show the difference in detection percentages in the
other three principal components compared to that of PC 2.
Figure 12 shows the detection percentage difference of the
other three principal components 1,3 and 4 compared to
PC 2. PC 1 has the highest difference and PC 3 has the low-
est for Gaussian kPCA and PCA. Although PC 1 captures
the highest variance fundamentally, under-performance of
PC 1 in terms of detection is due to the capture of noise in
the unoccupied environment as explained in Section 4.4.

5.3.5 Impact of the observation interval on detection
In our detection scheme, we selected Nobs = 3000 which

consists of 3 s intervals as the number of observations to per-
form dimensionality reduction and human detection. Here
we evaluate the impact of Nobs on presence detection for our
schemes Gaussion kPCA and Polynomial kPCA. Figure 13
illustrates the detection percentage variation with increase
of Nobs for a single scenario in experiment A.

Summarising the results, we can state that human detec-
tion based on Gaussian kPCA is quite efficient in adverse
conditions such as stationary users and NLoS links. Al-
though the Polynomial kPCA based approach detects hu-
man motion, it requires further tweaking of parameters.
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Figure 14: Temporal variation of PC 2 of a walking person in
Section 3.3 after applying G-kPCA to reduce dimensions.

6. DISCUSSION
This section discusses limitations and possible augmen-

tations to our dimensionality reduction techniques and the
human presence detection scheme. Our work explored only
the efficient usage of CSI amplitude on human presence de-
tection through non-linear techniques. However, the phase
response can also be incorporated in the detection, especially
given that the correlation between amplitude and phase are
non-linear. Our detection approach requires prior knowl-
edge of the environment to determine principal components,
thresholds and to adjust parameters. Since we are using
non-linear dimensionality reduction techniques, the compu-
tational complexity increases with the observation interval,
Nobs. However, the advantage of these techniques is that the
complexity is not dependant on the number of dimensions.
Here we did not analyse the detection performance of our
scheme in the presence of multiple occupants. However, in
such a situation we expect high detection performance from
this system compared to a single person because multiple
persons create more movements and disrupts more paths
than a single person.

With enhanced detection accuracy provided especially by
the Gaussian kernel, this non-linear technique can be ex-
tended to multiple occupant detection and activity recog-
nition. As an example for an activity recognition scenario,
in Figure 14 we plot the second PC of the experiment per-
formed to validate the human presence detection model in
Section 3. During this experiment, the person’s trajectory
lies perpendicular to the link. We plot the person’s move-
ment during the interval 1 s–6 s, as a reference, occupied
room noise is plotted during the interval 0 s–1 s.

7. CONCLUSIONS
In this work, we provided a model-based approach to

detect human presence using CSI provided by off-the-shelf



Wi-Fi chipsets. First we modelled the effect of humans on
CSI amplitude and using this model, we analysed the non-
linearities among CSI sub-carrier amplitudes. We then ex-
ploited those non-linearities efficiently by introducing non-
linear techniques to reduce CSI dimensions and then de-
tected human presence with just two Wi-Fi transceivers.
We explored the overall detection performance of our sys-
tem through true and false positives and evaluated the de-
tection scheme’s potential especially for detecting a static
person. We showed that especially the Gaussian kernel can
achieve a higher detection performance than the linear ap-
proach. Finally, we demonstrated that this technique can
be extended to activity recognition as well.
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