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Crowd Counting

• Retail shops and outlets
• Measure the success of promotional activities

• Street count: How many shoppers passed by the store?
• Effectiveness of window displays 

• Visitor count: How many customers are buyers?

• Exhibitions and festivals
• Crowd control to prevent injuries

• Public facilities
• Identify attractive public areas

1
A crowd counting scenario at a retail shop
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Existing Technologies

Cameras WiFi beacons Wireless sensing
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State of the Art

People counting

Presence Activity recognition Identity Position

▪ Count and extract activities of spatially 
distributed humans 
▪ Beamsteering using antennas at the receiver
▪ Requires no prior training

Wireless sensing
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▪ Measure dispersion in RSS or CSI 
[W. Xi et al. 2014], [S. Depatla et al. 2015]
▪ Spatially distributed transceivers [C. Xu et al 2013]
▪ Doppler features [S. Di Domenico et al. 2016]
▪ Transfer kernel learning [H. Zou et al., 2017]



State of the Art

People counting

Presence Activity recognition Identity Position

▪ Count and extract activities of spatially 
distributed humans 
▪ Beamsteering using antennas at the receiver
▪ Requires no prior training

Wireless sensing

3

▪ Measure dispersion in RSS or CSI 
[W. Xi et al. 2014], [S. Depatla et al. 2015]
▪ Spatially distributed transceivers [C. Xu et al 2013]
▪ Doppler features [S. Di Domenico et al. 2016]
▪ Transfer kernel learning [H. Zou et al., 2017]



State of the Art

People counting

Presence Activity recognition Identity Position

▪ Count and extract activities of spatially 
distributed humans 
▪ Beamsteering using antennas at the receiver
▪ Requires no prior training

Wireless sensing

3

▪ Measure dispersion in RSS or CSI 
[W. Xi et al. 2014], [S. Depatla et al. 2015]
▪ Spatially distributed transceivers [C. Xu et al 2013]
▪ Doppler features [S. Di Domenico et al. 2016]
▪ Transfer kernel learning [H. Zou et al., 2017]



State of the Art

People counting

Presence Activity recognition Identity Position

▪ Count and extract activities of spatially 
distributed humans 
▪ Beamsteering using antennas at the receiver
▪ Requires no prior training

Wireless sensing

3

▪ Measure dispersion in RSS or CSI 
[W. Xi et al. 2014], [S. Depatla et al. 2015]
▪ Spatially distributed transceivers [C. Xu et al 2013]
▪ Doppler features [S. Di Domenico et al. 2016]
▪ Transfer kernel learning [H. Zou et al., 2017]



Exploiting Spatial Diversity

• Modelling scattered wireless signals of a human at a 
receiver
• 𝒙 𝒕 = 𝒔 𝒕 + 𝒊 𝒕 + 𝒏(𝒕)
𝒙(𝒕) - received signal, 𝒔 𝒕 - LOS signal, 𝒊 𝒕 - signal 
scattered from human, 𝒏(𝒕) - noise

• Beamforming and steering the beam
• We use a delay-and-sum beamformer at the  RX
• Shift the phase of RX antennas to improve the 

gain in required direction

• Calibration for phase offsets
• Use anchor points to transmit and measure the 

phases at the receiver

Spatially distributed humans

TX

RX

4 Delay and sum Beamformer
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A Single Human Subject

Human exists Human free

• Highest fluctuation in the 
direction of the person

• Adjacent streams also 
fluctuate

• Fluctuations indicate activity 
and direction
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Multi-Subject Recognition

Human exists Human free
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Multi-Subject Recognition
Human exists Human free

• Fluctuations of beams are superpositions for 
adjacent humans

• Adjacent beams also 
fluctuate

• Highest fluctuation in the 
direction of the person

6

2 persons 3 persons 4 persons 5 persons



Human Count Estimation Steps

i) Obtain spatial streams 
• Beamsteering using the IQ samples. 

ii) Detect the absence of a person in a spatial stream 
• Discard those streams

iii) Estimate the human count
• Use the remaining streams
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Detect the absence of a person

• Kullback-Leibler divergence
• PMF of a Gaussian distribution modeling human-free traces

• PMF of each stream 

• Threshold to distinguish Empty room and streams with persons
• Streams with no persons is difficult to detect

• Reason: Interference from nearby streams

• Discard streams below the threshold
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Estimate the human count
Amplitudes of steered beams
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Finding natural clusters
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Estimate the human count
Amplitudes of  beams
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Experiments
• 5G testbed with software defined radios

• USRP X300 series with UBX 130 and SBX RF 
daughterboards
• 1 SDR as TX, # of TX antennas: 1
• 3 SDRs as the RX, # of RX antennas: 4
• 1SDR for synchronization

• Room size: 5.6 m ×4 m × 2.184 m
• Experiments upto 6 people
• squatting, walking inside the assigned 

square, standing, jumping, crawling and 
hand gestures
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Multi-subject Counting Results

• 116 experiments with up to 6 human subjects
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• Effect of the # of antennas

• State of the art comparison
[H. Zou et al., 2017]
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Multi-subject 
Counting Results



Extraction of Gestures

• Blind source separation for extraction of gestures
• JADE algorithm: exploits the non-Gaussian nature of the source signals

• Extracted 20/21 push-pull gestures
• 2, 2, and 3 humans in three experiments

Mixed signals from a single antenna 
for a push-pull gesture

Extracted gestures
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Conclusions

• Reported from studies on beamforming for multi-subject recognition

• Performed experiments with multiple persons using narrowband 
reception devices with limited antennas

• We develop algorithms to count the people and extract activities

• Counting up-to 4 persons within 1-person error

• Compared the results with a state of the art algorithm

• The data we recorded is openly available for further studies
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