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ABSTRACT

This paper presents the design and open source implementation of
CORMORANT, an Android authentication framework able to increase
usability and security of mobile authentication. It uses transparent
behavioral and physiological biometrics like gait, face, voice, and
keystrokes dynamics to continuously evaluate the user’s identity
without explicit interaction. Using signals like location, time of day,
and nearby devices to assess the risk of unauthorized access, the
required level of confidence in the user’s identity is dynamically
adjusted. Authentication results are shared securely, end-to-end
encrypted using the Signal messaging protocol, with trusted de-
vices to facilitate cross-device authentication for co-located devices,
detected using Bluetooth low energy beacons. CORMORANT is able
to reduce the authentication overhead by up to 97% compared to
conventional knowledge-based authentication whilst increasing
security at the same time. We share our perspective on some of
the successes and shortcomings we encountered implementing and
evaluating CORMORANT to hope to inform others working on similar
projects.

CCS CONCEPTS

« Security and privacy — Multi-factor authentication; Us-
ability in security and privacy; Biometrics.
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1 INTRODUCTION

Mobile devices like smartphones and notebooks that allow con-
venient access to valuable assets, information and services have
long become an indispensable part of everyday life. Small and mo-
bile, those devices have a high propensity to become lost or stolen.
Strong user authentication is thus crucial to protect against the risk
of unauthorized access, today commonly in form of knowledge-
based mechanisms like PIN, pattern, and password. However, these
authentication techniques require a significant amount of scarce
user attention in proportion to the usually short usage sessions [23],
which is further amplified by the inability of current approaches to
scale with the ever growing number of devices used simultaneously.
One out of three smartphone users thus chooses to not enable au-
thentication, with inconvenience being cited as the primary reason
as to why [1, 10, 16, 17].

Different promising approaches to reduce the burden of explicit
authentication have been explored. Transparent biometrics can
verify the user’s identity unobtrusively [28, 46, 50] using traits like
gait [39], mouth motions [52], heartbeat [56], breathing acoustics
[4], voice [42], mouse movement [15], and keystroke dynamics
[29]. Risk estimation can be used to dynamically adjust the security
settings to apply as much security as needed but as little as possible
[19, 27]. And with the number of interconnected devices owned and
used by a single individual growing, extending the authentication
scope in order to leverage contextual and biometric information
gathered within a group of trusted devices [26, 51] is another ap-
proach to improve usability by reducing explicit authentication
whilst also improving security.

The concept of CORMORANT, a mobile authentication system that
combines all three approaches, has been recently proposed by
Hintze et al. [22]. It uses transparent behavioral and physiolog-
ical biometrics to continuously evaluate the user’s identity without
explicit interaction. The risk of unauthorized access derived from
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signals like location, time of day and nearby devices is used to
dynamically adjust the required level of confidence in the user’s
identity. Risk and authentication results are shared with trusted
devices to facilitate cross-device authentication for co-located de-
vices. Conducting a large-scale agent-based simulation based on
more than 720 000 days of real-world device usage and 6.7 million
simulated robberies and thefts sourced from police reports, the
authors found that the proposed system reduces the frequency of
password entries required on smartphones by up to 97.82% whilst si-
multaneously reducing the risk of unauthorized access in the event
of a crime by 97.72%, compared to conventional knowledge-based
authentication.

In this paper, we summarize the practical implementation of the
system proposed in [22] and share our experiences and lessons
learned in the hope to inform and inspire others working on similar
projects. Our contributions are as follows:

e We present the architecture and implementation of an open
source Android framework that dynamically combines ex-
plicit and implicit authentication mechanisms with continu-
ous risk estimation, shared securely across a group of trusted
devices to enhance usability and increase security.

e We demonstrate the feasibility of authentication plugins
based on gait, voice, face, and keystroke dynamics.

e We share our experience and lessons learned from design-
ing, implementing, and evaluating a complex distributed
asynchronous authentication system.

2 RELATED WORK

It has been shown previously that risk can successfully be incor-
porated into mobile device authentication. Hocking et al. [26] de-
veloped an Authentication Aura that leverages the latent security
potential contained in surrounding devices and possessions in ev-
eryday life. A similar approach comes from Chow et al. [5] who
propose a combination of multi-device and risk-aware authentica-
tion in which the security settings are dynamically adjusted based
on the presence of other trusted devices in the vicinity. Another
example is Context-Aware Scalable Authentication (CASA) [19]
which dynamically adjusts the required strength of authentication
based on contextual information like time and location.

Multi-modal biometric systems, i.e., systems incorporating bio-
metric information from multiple sources, have been successfully
applied to the domain of mobile devices to overcome some draw-
backs of unimodal biometrics [44]. Examples are face, teeth and
voice authentication on mobile devices [31, 53]. In particular trans-
parent biometrics can be used to reduce explicit authentication.
Crawford et al. [7] showed that by using keystroke dynamics and
speaker verification on mobile devices, explicit authentication could
be reduced by 67%. Closed to our approach comes Itus [30], a frame-
work for implicit authentication on mobile devices which shares a
number of goals with our approach, for instance it enables other
researchers to integrate novel authentication mechanisms into the
framework.

With the number of mobile devices people carry and use simulta-
neously, sensing and taking leverage of nearby trusted devices for
the purpose of multi-device authentication becomes increasingly
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important. An early contribution in this direction comes from Var-
shavsky et al. [54], who proposed to use knowledge of the shared
radio environment as proof of physical proximity to authenticate
co-located devices. To avoid password challenges, Stajano [51] in-
troduced Pico which unlocks a device in the presence of k-out-of-n
small encrypted hardware tokens called Picosiblings. A preliminary
architecture for a cross-device authentication system utilizing mul-
tiple biometrics as well as risk has been proposed in [20] and later
expanded in [21, 24, 25]. A system for behavior-based, transparent
multi-factor authentication has been patented by Gordon et al. [14].
It shares some key characteristics with our approach, for instance
using different transparent biometrics across multiple devices, but
differs from ours in that it relies on convolutional deep neural
networks to learn subject-specific features.

The highest resemblance with our concept has the framework
for progressive authentication on mobile phones by Riva et al.
[43], which reportedly achieves a 42% reduction in required ex-
plicit authentication attempts. Like CORMORANT, it supports contin-
uous multi-modal biometrics, including face and voice recognition.
It takes nearby devices into account, though only rudimentary.
CORMORANT is different from this work in that the set of biometrics
used is dynamic at runtime, a more sophisticated notion of multi-
device authentication is used, and that risk is taken into account
for making security decisions.

3 ARCHITECTURE

3.1 Design Goals

We designed the architecture of CORMORANT with the following
design goals in mind:

Security and Privacy: Security is an important consideration
when developing any form of user authentication. In the case of
CORMORANT, this means balancing the level of security achieved
with the burden that explicit authentication places on the user. The
goal is to dynamically provide a risk-adequate level of security
whilst minimizing user interruption.

To reduce the number of explicit authentication interactions
like entering a password, we utilize behavioral and physiological
biometrics, location data, and generally make use of the devices’
sensors. Since those privacy sensitive data are shared in aggre-
gated form between trusted devices using wireless communication
and central servers, ensuring privacy, e.g., by using end-to-end
encryption, is paramount.

Flexibility: Mobile device environments in general and the An-
droid ecosystem in particular provide a high degree of diversity
on different levels. On the hardware level, the spectrum ranges
from cheap devices with outdated components to expensive, cut-
ting edge flagship devices with ample computational resources.
Available APIs depend mostly on the age of the device and the man-
ufacturer. Form factors vary in size from smart watches to smart
TVs and smart fridges. Users display a high degree of diversity
in their device usage patterns with daily usage varying by more
than an order of magnitude [23]. Flexibility is therefore desirable
to enable the use of, for instance, biometric authentication that
requires certain hardware on suitable devices without impeding
the applicability of the framework on devices lacking the necessary
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hardware resources. CORMORANT should also be easily customizable
to account for varying needs and environments by the user.

Extensibility: With the number of available biometric authenti-
cation methods for mobile devices constantly increasing as well
as the unprecedented pace with which hardware and software
evolve in the mobile ecosystems, extensibility facilitates an authen-
tication system to which independent developers and researchers
can contribute novel means of authentication and risk assessment,
thereby leveraging the framework infrastructure and already avail-
able means of authentication and risk assessment.

Ease of Use: Since user-friendly authentication is the topmost
motivation for developing CORMORANT, usability is an important
consideration when designing the framework. We consider two
groups of stakeholders in this regard, namely device users and
developers contributing new means of authentication or risk assess-
ment. Regarding the device user, we strive for an user interface that
is straightforward to use and has reasonable default configurations.
As for developers and researchers, great importance is placed on
API design, documentation and ease of implementation to make
contributing to CORMORANT as easy as possible.

3.2 Android Client

We implemented CORMORANT as an Android application, though
with additional effort, other platforms could be supported as well.
The framework application operates on the results reported by
authentication and risk plugin applications installed independently
by the user as well as results reported from other trusted devices.
It can lock or unlock the device or challenge the user with explicit
authentication if the implicit confidence in the user’s identity gained
through transparent biometrics is not sufficient to grant access
under the current risk level. The framework application allows the
user to configure CORMORANT, including managing the group of
trusted devices, learn about the location and state of other devices,
and adjust various configuration parameters.

Apart from protecting general access to the device, the frame-
work offers an interface for applications to query the current confi-
dence in the user’s identity based on available means of authentica-
tion as well as the estimated risk of unauthorized access. Moreover,
applications can request to raise the confidence level in which case
the framework might prompt the user with some form of explicit
authentication such as pan face recognition [13]. This allows for
finer access control than today’s authentication models where ac-
cess is largely granted on an all-or-nothing principle where a user
either gets access to every application and service if successfully
authenticated or to none otherwise. However, a calculator applica-
tion arguably needs less protection than a mobile banking app. By
using the CORMORANT API, an application could ensure that it only
operates when certain, app-dependent confidence and risk levels
are met. But one could easily go further and apply this model of
access control to certain functionalities within applications or even
transactions. For example, transferring 1$ using a mobile banking
app might require a lower level of confidence while authorizing a
transaction worth 10,000$ might require multiple authentication
mechanisms to positively identify the genuine user (virtually a
dynamic form of multi factor authentication).
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3.3 Plugin API

To achieve the aforementioned goals of flexibility and extensibility,
CORMORANT is designed as a modular system that can be extended
dynamically at runtime through a plugin mechanism. Plugins come
in the form of risk plugins, which assess the probability of unautho-
rized physical access to a device, and authentication plugins which
implicitly or explicitly authenticate the user of a device. While we
provide a number of biometric and knowledge-based authentica-
tion plugins as well as some risk plugins, the primary motivation
behind the plugin mechanism is to allow third party developers
and researchers to utilize and extend CORMORANT with novel means
of risk assessment or authentication. Therefore, framework and
plugins need to have independent life cycles. Plugins are hence
developed and deployed as stand-alone Android applications with
independent dependencies and permissions. Integration into the
framework is achieved using the whiteboard pattern [41]: Plugins
extend AbstractPluginService, which is an Android Service.
The service implements the binding to the CORMORANT framework
process as well as serializing and deserializing of parameters. Plug-
ins are required to declare a custom Android permission to prevent
applications from influencing the framework without the user’s
consent. Changes in risk assessment or authentication state are
propagated either event-based, periodically pulled or explicitly
requested upon necessity, for instance to trigger explicit authen-
tication. The API is published as an Android library in source!
and in the JCenter Maven repository?. Due to this API, creating a
runnable plugin integrated into CORMORANT can be achieved with
as little as implementing a single abstract method, as demonstrated
in listing 1.
public class DemoRiskPlugin extends AbstractRiskService {

@Override

protected void onDataUpdateRequest() {

publishRiskUpdate (new StatusDataRisk ()
.status (StatusDataRisk.Status.OPERATIONAL)
.risk (0.5));

}

}

Listing 1: Minimal example of a risk plugin implementation

3.4 Backend

In order to utilize authentication information gathered on other
devices, trusted devices need to be able to efficiently and securely
communicate. To maintain security and privacy, communication
needs to be authenticated and encrypted. Groups of trusted devices
also need to be dynamic, as users might add additional devices or
remove devices sold, lost, or stolen at any time. Finally, the mobile
and distributed application of CORMORANT requires the underly-
ing communication to cope with lost messages and temporarily
unresponsive devices.

To account for these requirements, our implementation relies
on the Signal messaging protocol [40], a non-federated end-to-end
encryption security protocol for instant messaging that has been
recently adopted by popular instant messaging services such as
WhatsApp [49], Facebook Messenger [47], and Google Allo [48].

!https://github.com/mobilesec/cormorant
Zhttps://dLbintray.com/mobilesec/maven/at/usmile/cormorant/cormorant-api
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Signal offers a number of desirable security properties, including
forward and future secrecy. The protocol has recently been formally
analyzed with no major flaws found in its design [6].

To use the Signal protocol for asynchronous communication, a
server is required to temporarily store and distribute messages be-
tween devices. The server also holds pre-send batches of ephemeral
public keys to allow encrypting messages for devices currently
offline and thus unavailable for direct exchange of ephemeral keys.

Asbasis for the CORMORANT backend, we forked the Signal server’
implemented by Open Whisper Systems under AGPLv3 open source
license which serves as backend infrastructure for the Signal mes-
saging application. The Signal codebase was modified to remove
some external dependencies not necessary for CORMORANT, for in-
stance Apple Push Notifications (APN), Amazon Web Services stor-
age, and Twillio’s SMS service. Unlike the Signal application, we
don’t use phone numbers but universally unique identifiers (UUIDs)
as device identifiers in CORMORANT, so the server code was adapted
to support UUIDs.

The CORMORANT backend consists of four components. An Apache
HTTP Server, configured as an reverse proxy that accept HTTPS
connections coming from the Android clients and authenticates
itself using a Let’s Encrypt* X.509 TLS certificate. Requests are for-
warded to the CORMORANT Signal server which provides REST-APIs
for creating accounts, distributing devices’ public keys, sending
messages as well as a WebSocket-AP1I for retrieving messages. A
PostgreSQL database serves as permanent storage for device ac-
counts, public keys, and (encrypted) messages until they are deliv-
ered to the target device. A Redis in-memory data structure store
is used as a shared cache in case multiple servers are required to
handle the system load. The backend is deployed on an Ubuntu
Linux 16.04 server hosted on Amazon Elastic Compute Cloud (EC2).
The code is available under AGPLv3 open source license,” allowing
curious or particularly privacy conscious users to deploy and host
their own instance of the backend if desired.

3.5 Distance Estimation

To facilitate multi-device authentication, being able to accurately
estimate the distance between trusted devices is crucial. To this
end, we implemented coarse and fine distance estimation:

Coarse Distance Estimation: For coarse distance estimation, each
device determines its own location using the Google Services Fused
Location Provider. The Fused Location Provider utilizes GPS, WiFi
and GSM data in order to determine the device’s current location
with an accuracy of 3 to 10 meters. The location in form of latitude
and longitude coordinates is then periodically broadcasted to other
devices within the same group.

After obtaining location information, each device uses Loca-
tion.distanceBetween() from the Android Location Framework to
compute the approximate relative distance in meters between the
two devices.

3https://github.com/WhisperSystems/Signal-Server
“https://letsencrypt.org
Shttps://github.com/mobilesec/cormorant-signal-server
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Fine Distance Estimation: While the coarse distance estimation
is fairly energy efficient, the accuracy is too coarse for some appli-
cations within the proposed framework. In addition, it is of limited
availability in some indoor scenarios. We therefore utilize Blue-
tooth Low Energy Beacons to gain a finer distance estimation when
devices are spaced only centimeters to few meters apart.

Each device publishes a Bluetooth beacon signal by repeatedly
sending a static advertisement packet, which requires little power,
and simultaneously scans for nearby beacons. A published beacon
is configured with the framework specific manufacturer ID, major
and minor numbers intended to identify and distinguish groups
and individual beacons, and the device’s UUID. While the latter
is necessary to assign a discovered beacon to the corresponding
trusted group member, the former is configured in order to mark
CORMORANT beacons which are filtered by the framework’s beacon
scanner.

Once a beacon sent by a device within the same group is dis-
covered, the distance between the devices is computed from the
received signal strength indicator (RSSI) by applying an estimation
model developed by Aman et al. [2]. It calculates the estimated
distance between the devices d in meters by comparing the cur-
rent RSSI with the transmitting power (txPower) of the beacon.
The transmitting power is a calibrated value, which consists of the
signal level at the reference distance of one meter.

RSSI
d = 0.89976 % (———

)770% 1 0.111.
txPower

Security Limitation. We note that our current implementation of
fine distance estimation is susceptible to unauthorized tracking by
other Bluetooth receivers within range, which might compromise
a user’s privacy to some extent. A measure to mitigate tracking
would be to apply cryptographic randomization to the broadcast
identifier as proposed in [18].

Apart from tracking, Bluetooth beacons in general can be spoofed
by amplifying the Bluetooth signal. In a scenario where two devices
constituting a group are in different locations, an attacker could
receive the beacon signal of one device, then relay it to an attacker
controlled device in the vicinity of the second trusted device, which
then sends out a similar signal, posing as the trusted device. To
mitigate this attack, fine distance estimation is only applied when
devices are believed to be in close proximity based on the coarse
distance estimation. However, GPS, WiFi, and GSM signals are gen-
erally also susceptible to spoofing if a powerful attacker is equipped
with the necessary hardware. If an attacker possessing the capabil-
ity to spoof the distance estimation (e.g., a governmental agency)
is assumed in the user’s personal threat model, it is advisable to
refrain from using the multi-device authentication functionality of
CORMORANT but restrain its scope to individual devices.

4 AUTHENTICATION

We implemented a number of behavioral and physiological biomet-
ric authentication plugins for CORMORANT along with some trivial
knowledge-based plugins like PIN and password as fallbacks. The
following sections outline the biometric means of authentication
currently available for CORMORANT.
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4.1 Gait Recognition

Gait as a biometric trait offers an unobtrusive way of recognizing
individuals from their walking styles. Various studies have explored
the feasibility of deploying gait authentication on off-the-shelf
mobile devices [9, 32, 37, 39]. We have developed a gait plugin that
implicitly processes accelerometer data and delivers authentication
results to the CORMORANT framework. Figure 1 outlines the steps
involved in the enrollment and the verification phases. To enroll, a
gait template is created by walking ~ 300 meters at normal pace,
carrying the mobile phone in the trousers’ front pocket. Once the
gait template is generated, the plugin automatically switches to
continuous verification which is similar to the enrollment phase.
Details about the gait template generation process can be found
in [37, 38]. Capturing acceleration data is fairly power-intensive.
We therefore utilize a low-powered ever-on step detector sensor to
avoid recording accelerometer data when the user is not actually
walking. Once the user starts walking, the step detector triggers the
plugin which in turn registers to the accelerometer sensor to start
recording acceleration values. Accelerometer data are recorded for
a period of fifteen seconds, after which the application checks if the
user is still walking by monitoring the timestamps between the steps
taken by the user, and if so, continues to record acceleration data. In
parallel, previously recorded data are processed and authentication
results computed by applying a matching engine that uses Dynamic
Time Warping (DTW) distance to compare live gait cycles with the
enrolled template.

To evaluate the performance of our gait authentication plugin,
we have recorded biometric gait data from 35 participants (6 fe-
males and 29 males) using a Google Nexus Android phone. For data
collection purpose, we developed an Android application which
records three dimensional (X, Y, and Z axis) accelerometer data at a
sampling rate of 100 Hz and writes it to a text file with timestamps.
Participants were asked to wear a trousers with not-too-loose front
pockets. For capturing a distinctive walking style, the phone or
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Figure 2: Gait recognition evaluation results

sensor must be placed close to the body otherwise it might pick
up too much random noise. In the data recording phase, the phone
was placed inside the trousers’ right side pocket. Participants were
asked to walk at their normal pace in a 68 meter long straight cor-
ridor (with no stairs). They were told to wait for one second at
the end of the walk then turn around and wait for another second
before starting their new walk. In one session, every subject walked
4 X 68 = 272 meters or in other words completed two rounds of
the corridor. For every subject, data recording was conducted in
two different sessions. An average gap between the sessions was
about 25 days. Eight walks were recorded for every subject in two
different sessions. The first walk was used to generate the reference
template of the subjects, whereas, the remaining walks were used to
generate probe templates. Once the reference and probe templates
are generated they are compared against each other by using DTW
to compute inter-class and intra-class distances. Using this data set
we have obtained a 13% Equal Error Rate (EER) as shown in fig. 2.

4.2 Keystroke Dynamics Recognition

Every person has their own individual typing style while entering
data into a computer system. By employing these so called key-
stroke dynamics, it is possible to recognize the user of a device.
Keystroke dynamics is an implicit and unobtrusive biometric feature
that can be captured without any user interaction apart from usual
keyboard input. An important design decision is whether keystroke
recognition should be static or dynamic. For static recognition, the
system is aware of the text to be entered beforehand and can train
the classifier for specific input sequences. Dynamic recognition,
however, is much more difficult as any interaction of a user with the
keyboard is taken into account and the system has to continuously
re-evaluate whether that matches the user’s general behavior. The
increased difficulty is offset by the possibility to authenticate users
more often. The main component of keystroke dynamics recogni-
tion is measuring the flow of key presses and extracting timing
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Figure 3: Keystroke dynamics authentication overview

information. Commonly used metrics are digraphs (press-to-press
time between one and the consecutive key) and dwell time (time a
key is held down). These timings can be gathered using any type
of keyboard, but mobile devices contain a vast array of sensors
available for enhancing performance. In addition, a touch screen
tells much more about a user’s interaction with the keyboard than
other devices. This can be the pressure applied to the screen for
each keystroke, angle and size of the finger on the screen, or the
relative position of the finger to the pressed key.

The CORMORANT keystroke dynamics plugin is a static recogni-
tion system for password inputs. These usually stay the same for a
long time, have relatively few characters and are therefore quicker
to verify than whole texts. Also, they distinguish different typists
more easily as the genuine user has more training. We extended the
standard keyboard contained in the Android AOSP with functional-
ity to capture keystroke behavior and an API to indicate successful
logins. Classification is performed using a Greedy Maximum Match
Scores (GMMS) measure with modification to minimize instead
of maximizing [35]. The keystroke timings are augmented by the
aforementioned touch metrics, gravity and accelerometer sensor
data. These are captured every time a keystroke event (pressing or
releasing a key) occurs.

For evaluation, we developed an app using a randomly generated
six-character password with one number at start and end as login.
We asked three male owners of identical Google Nexus 4 phones
and a male owning a Samsung Galaxy S4 to enter this password
over three months and a total of 100 times each. They were asked to
distribute acquisitions over various situations during the day. This
resulted in 300 samples for training and evaluating the algorithm
and 100 samples for testing whether the trained model is portable
between devices. For evaluation, the enrollment phase ended after
the first ten acquisitions, the rest were used for verification. Picking
the optimum data sources as explained above, we could obtain a
17.19% EER as shown in fig. 4.

D.Hintze, M.Fller, S.Scholz, R.Findling, M.Muaaz, P.Kapfer, W.Niifler, R.Mayrhofer

1.00

0.75

0.50

True Positive Rate (TPR)

0.25

0.00 0.25 0.50 0.75 1.00
False Positive Rate (FPR)

Figure 4: Keystroke dynamics authentication results

4.3 Speaker Recognition

Speaker recognition is a technique that allows to identify individ-
uals from their voice samples. Speaker recognition systems can
be divided into two types: text-dependent and text-independent [3].
In text-dependent speaker recognition systems users use the same
utterance for enrollment and verification phase. Whereas, in a
text-independent system, users are not bound to use the same utter-
ance for enrollment and verification process. Moreover, a speaker
recognition system on smartphones can be used in explicit and
implicit fashion. Considering the use cases and types of speaker
recognition systems, we have designed a speaker verification plu-
gin that uses the Gaussian Mixture Model-Universal Background
Model (GMM-UBM) verification framework, and it can be used in
both implicit and explicit scenarios. Briefly, a GMM-UBM approach
consists of three main steps. Firstly, a UBM is trained offline by
using Expectation Maximization (EM), and the training data for
UBM is obtained by pooling the feature vectors extracted from the
speech data of lots of subjects. In general, a UBM is intended to
represent a subject independent distribution of acoustic features.
Secondly, user specific models are adapted from the UBM by using
the Maximum-A-Posteriori (MAP) adaptation, and finally the fea-
ture vectors extracted from the test data are evaluated against the
UBM and user specific model and a likelihood ratio test is carried
out to accept or reject genuine and impostor users. Details about
the GMM-UBM approach can be found in [42]. Figure 5 shows
various steps of the enrollment and the verification process. In the
enrollment phase, first, users are required to download pre-trained
UBM models from a server as per their use case. This is due to
the reason that training a UBM is a computation intensive task,
and it will also be cumbersome for users to collect data from a lot
of subjects. Thereafter, users are asked to record speech samples
which are used to adapt speaker specific models. These speaker
specific models are stored in the database. In the verification phase,
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Figure 5: Voice authentication overview

speech data collected (implicitly or explicitly) from the user under-
goes feature extraction. These features are evaluated against the
UBM and speaker specific models, and authentication results are
delivered back to the CORMORANT framework.

We have used THUYG-20 SRE and MIT-MDSVC data sets to eval-
uate the performance of our text-independent and text-dependent
speaker recognition plugin, respectively. THUYG-20 SRE is a text-
independent data set, consisting of more than 20 hours of speech
data recorded from 353 speakers by using a carbon microphone at a
sampling rate of 16 KHz. The entire data set consists of three parts:
a ubm-set, an enroll-set, and a test-set. The ubm-set consists of 4771
utterances recorded from 100 male and 100 female speakers. The
enroll-set consists of 153 utterances recorded from 153 (87 female
and 66 male) speakers. Each enrollment utterance is 30 seconds long.
The test-set also consists of 153 speakers including 87 female and 66
male. Each utterance in the test-set is about ten seconds long. After
closely observing the data set, we found some participants do not
have any test utterance, and others have a different number of test
utterances. Furthermore, we found that 141 speakers have at least
three test utterances. Therefore, we did not include those speak-
ers who have less than three test utterances. Moreover, for users
who have more than three test utterances, we have only included
their first three test utterances to ensure that each speaker has an
equal number of test utterances. From every frame of each utter-
ance in the THUYG-20 SRE data set, we extracted a 39 dimensional
feature vector including 13 Mel Frequency Cepstral Coefficients
(MFCC), 13 delta MFCC, and 13 double delta MFCC. Afterwards,
the Cepstral Mean Variance Normalization (CMVN) was applied at
utterance level to normalize the feature vectors. Features extracted
from the ubm-set were pooled together to train a speaker inde-
pendent UBM with 512 Gaussian components. Features extracted
from the enrollment-set were used to adapt speaker specific models,
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Figure 6: Voice authentication evaluation results

and features extracted from the test-set were used to evaluate the
performance of the plugin. We have obtained an EER of 2.3641%
(Fig. 6).

The MIT-MDSVC data set is a text-dependent data set, and it
was recorded in variable acoustic conditions at a sampling rate
of 16 KHz by using a hand-held device. These acoustic conditions
involve three different locations (a quiet office, a noisy hallway, and
a busy intersection) and two different microphones (the internal
microphone of the hand-held device and the microphone of an
external headset). The combinations of microphones and locations
resulted in six different acoustic conditions. In each acoustic condi-
tion, subjects were asked to recite nine short phrases such as “mint
chocolate chip” which were displayed on the device. Thus, for all
six acoustic conditions, a total of 54 speech samples were recorded
for each subject. The speech data were recorded from 88 subjects
including 45 female and 43 male participants. From each frame of
every utterance of the data set, we extracted 39 dimensional feature
vectors. The speech data from 40 (23 female and 17 male) subjects
was recorded in a single session and it was used to train the UBM
with 256 Gaussian components, and the data of the remaining 48
subjects (22 female and 26 male) were recorded twice in two differ-
ent sessions, where each session lasted about 20 minutes. The data
from the first session were used to adapt speaker specific models
and the data from the second session were used to evaluate the
plugin. The EER obtained using this setup is 5.3498% (Fig. 6).

4.4 Face Recognition

Face authentication verifies users based on their facial features.
With modern mobile devices, embedded cameras serve as the source
for face images containing those features. Mobile face authentica-
tion is possible both in explicit and implicit form. Explicit means
users deliberately positioning device camera and face to each other,
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while implicit means that cameras capture facial features without
users deliberately cooperating, e.g., during conventional device
usage.
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Figure 7: Face authentication overview

With the CORMORANT face authentication plugin ¢ enrollment
is explicit, while verification can be both explicit and implicit. For
enrollment users need to deliberately take a predefined number
of images of their faces in different settings, e.g., with variation
in face illumination. For explicit face verification with our plugin,
users deliberately position the device’s camera and their face to
each other to provide an authentication confidence measurement
to CORMORANT. In contrast, with implicit authentication our plugin
continuously utilizes faces visible to the device camera and pro-
vides the corresponding authentication confidence measurements
to CORMORANT. The latter can typically be done while users interact
with mobile devices and the embedded front facing cameras capture
their faces. In both settings, the faces captured during authentica-
tion are compared to enrollment faces to deduce an authentication
acceptance or rejection.

In terms of processing, the plugin at first applies grayscaling,
downscaling, and histogram equalization to an original image. It
then performs Viola and Jones face detection [34, 55] and segments
the quadratic region around the largest detected face, should its
diagonal be at least % of the diagonal of the image. Segmented
faces are downscaled and their histogram is equalized again. Then
features are extracted as coefficients of a multiresolution analysis 2D
discrete wavelet transform using the Daubechies Least-Asymmetric
2D wavelet [8]. During enrollment the features of each captured
face are stored in the enrollment template. During authentication
those are compared pairwise with features from newly captured
faces, using the pairwise absolute distance between feature vectors
with a precomputed Linear Discriminant Analysis (LDA) model

©The CORMORANT face authentication plugin source code is public at https://github.
com/mobilesec/authentication-framework- plugin-face.
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(shipped with the face authentication plugin) to deduce the final
authentication acceptance or rejection [12] as depicted in fig. 7.
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Figure 8: Face authentication evaluation results

The face authentication approach underlying the CORMORANT
face authentication plugin has been evaluated on subsets of the Yale-
B [33] and the Panshot Face Unlock database [11], containing 511
pictures of 27 participants and 600 pictures of 30 participants. The
evaluation procedure utilized a 50/50 gallery insensitive training
and test set split. Evaluation of different setups and selection of
the optimal choice thereof only utilized data from the training set,
internally using a ten-fold cross validation as resampling technique.
The selected setup from training data uses eight face images in
the enrollment template and four newly recorded face images for
authentication, which allows for a total computation time of about
one second, once faces have been captured. Keeping this duration
short is important, as results should be available as quickly as
possible when performing face authentication explicitly. This setup
further achieved an EER of 2.4% and 5.3% for the Yale-B and the
Panshot Face Unlock database on the previously held-back test
set [12] (fig. 8).

5 LESSONS LEARNED

In this section we share our perspective on some of the successes
and shortcomings we encountered implementing and evaluating
CORMORANT in a hope to inform others working on similar projects.

One design decision that in particular proofed very valuable was
to introduce a plugin mechanism that decoupled different imple-
mentations of risk evaluation and authentication from the main
framework and from one another. Since essentially each of these
plugins was developed by a different researcher across a number of
research groups and institutes, it maximized autonomy and flexibil-
ity that only a minimal API needed to be implemented. Dependen-
cies, architecture, permissions, configurations, enrollment and alike
were handled in the individual plugin projects which lowered the
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entry barrier for onboarding new plugins significantly. Since plug-
ins are run as standalone applications as far as the Android runtime
is concerned, crashes also only affected an individual plugin and not
the entire system. However, we also noted a number of downsides
to this approach. On the framework part, it significantly increases
the complexity since it needs to handle intra process communica-
tion as well as the unpredictable appearance and disappearance
of individual plugin processes. Another consequence was that it
became much harder to create an appealing user experience. For
instance, installing the framework without a minimal set of risk
and authentication plugins limits its utility substantially. Also the
look and feel of each plugin is naturally different from the core
framework and the rest, making it a rather patchy experience. We
still believe that in the context of a research project, the benefits of
the plugin approach outweigh its drawbacks.

A critical capability when developing a novel authentication
mechanism for mobile devices is the ability to reliably lock and un-
lock the device. On modern mobile operating systems, applications
are sandboxed and confined to prevent a rogue app from taking
control over the device [36], thus a dedicated API for controlling
the lockscreen is necessary. When we started this project in 2014,
such an API still existed in form of the KeyguardManager which
allowed locking — and more importantly — unlocking an Android
device programmatically. However, KeyguardManager was depre-
cated with API level 15 and no longer works on modern devices.
Another still existing API is the DevicePolicyManager, mainly in-
tended to allow companies to remotely manage their mobile device
fleet. It facilitates locking a device programatically, yet does not sup-
port unlocking it. Still an API perfect for projects like CORMORANT
exists in form of the TrustAgentService, a “service that notifies
the system about whether it believes the environment of the de-
vice to be trusted””, which enables Android’s smart lock features
like face unlock or unlock by Bluetooth devices in range. Unfortu-
nately, the API is marked as @SystemApi and thus hidden from the
public APIL To circumvent the visibility restriction, it is necessary
to “root” the device, thereby obtaining more or less full control
over the operating system. However, this would mean violating
Android’s security model [36] which might be acceptable for a re-
search project but is ill advised to apply on actual consumer devices.
So after KeyguardManager ceased working on current devices, we
unfortunately had to abandon ambition to integrate directly with
the native Android lock screen and had to resort - like other authen-
tication research projects (e.g. [45]) - to a purely visual indicator
to signify the lock state. Since this does not offer any protection
against unauthorized access, third-party authentication systems
like CORMORANT can not practically be used to unlock devices aside
from demonstrating the concept unless they are either adopted
by the Android Open Source Project or a public API similar to
TrustAgentService is introduced. This also limits how such systems
can be evaluated without exposing study participants to the risk of
unauthorized device access.

This leads us to the most challenging problem we encountered:
The question of how to evaluate a complex and dynamic authenti-
cation system like CORMORANT. Fundamentally, the two conflicting

https://android.googlesource.com/platform/frameworks/base/+/d4efaac/core/java/
android/service/trust/TrustAgentService.java
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objectives usability and security are of most interest. For subcom-
ponents like individual biometrics, we could use established tech-
niques like cross-validation to measure their performance in both
regards, quantified e.g., by their Equal Error Rate. For assessing the
overall usability of the system, handset-based user studies can be
conducted. Usually, usability is then quantified by comparing the
number of explicit authentication interactions against either a con-
trol group or a baseline established transparently in the background
[57]. Measuring security e.g., by evaluating unauthorized access is
practically impossible [22] to do in such a study, as theft, robbery,
and device loss are luckily rather infrequent on the level of an in-
dividual - besides being also hard to reliably detect and quantify.
This is problematic, as measuring only usability without accounting
for security at the same time can arguably be misleading, given
that ultimately authentication could be disabled entirely to max-
imize usability. Lab studies are sometimes used to overcome this
limitation by simulating unauthorized access, but they don’t scale
beyond a controlled environment and a limited number of partici-
pants (e.g., n = 9 [43]) and are thus limited in their generalizability.
We therefore chose to refrain from evaluating the performance of
CORMORANT in that way and refer to the extensive simulation-based
evaluation of the underlying concept of CORMORANT as reported in
[22], which relies on real world experimental data gathered dur-
ing the implementation of the individual biometrics in this paper
and therefore as close to the implementation presented here as
possible. Since the problem of how to evaluate the overall system
generally applies to similar projects as well, one potential solution
could be for the research community to converge on a common
simulation model that could be applied to assess individual imple-
mentations, similar to how standardized datasets allow to compare
the performance of different implementations of biometric systems.

6 CONCLUSION AND FUTURE WORK

In this paper we presented the lessons learned from designing and
implementing CORMORANT, an open source Android authentication
framework that facilitates to reduce the overhead of manual authen-
tication by up to 97% [22] whilst improving security at the same
time. While challenging, we found no insurmountable obstacles
with regards to implementing various biometrics, risk estimations
or the framework itself. However, given the for security reasons
restrictive Android API and runtime environment, we note that
support from the operating system vendor is generally necessary
for CORMORANT and similar projects to be of practical applicability.
We also found that evaluating such complex authentication systems
in form of user studies is infeasible as security can’t be adequately
measured and consider standardized large-scale simulations a vi-
able alternative. Finally we invite interested researches to make use
of our open source contributions presented in this paper.®
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